
AugmentedQueue: A Scalable In-Network Abstraction for
Data Center Network Sharing

Xinyu Crystal Wu∗
Rice University

Zhuang Wang∗
Rice University

Weitao Wang
Rice University

T. S. Eugene Ng
Rice University

ABSTRACT
Traffic aggregates in cloud data center networks are by and large
buffered and transmitted by simple physical FIFO queues. Despite
the crucial role they play, a well-known problem of physical FIFO
queues is that they are unable to provide precise bandwidth guar-
antees. This leads to a range of negative impacts spanning the
application layer, the transport layer, and the data link layer.

In this paper, we address this problem with Augmented Queue
(AQ), a scalable in-network abstraction that provides precise band-
width guarantees for traffic constituents. AQ serves multiple valu-
able use cases in data center networks. For example, AQ facilitates
the isolation of traffic from different applications; ensures that dif-
ferent congestion control algorithms can properly co-exist; and
enforces inbound and outbound bandwidth for virtual machines.
We demonstrate via testbed and simulation experiments that AQ
can provide precise bandwidth guarantees and scale to millions of
traffic constituents.

CCS CONCEPTS
• Networks → In-network processing; Network dynamics;

KEYWORDS
Cloud Computing; Network Sharing; In-network Abstraction

ACM Reference Format:
Xinyu Crystal Wu, Zhuang Wang, Weitao Wang, and T. S. Eugene Ng. 2023.
Augmented Queue: A Scalable In-Network Abstraction for Data Center
Network Sharing. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM
’23), September 10–14, 2023, New York, NY, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3603269.3604858

1 INTRODUCTION
Large cloud infrastructures such as Azure, AWS, and Google Cloud
handle the network traffic of millions of customers every day. De-
spite the extreme number of customers and applications sharing

∗Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604858

their networks’ bandwidth, at the lowest level, aggregated net-
work traffic traversing each switch port is buffered and transmitted
by a small number of – and sometimes even just one – physical
FIFO queue (or "physical queue" for short). To govern how physical
queues are shared, cloud providers rely on end-to-end congestion
control (CC) algorithms as well as traffic rate limiters at end hosts.

However, a well-known problem of physical queues is that they
are unable to provide precise bandwidth guarantees for different
traffic constituents, which negatively impacts multiple network
layers. At the application layer, traffic from aggressive and gentle
applications alike sharing a physical queue can interfere with each
other, leading to unpredictable performance that can vary by an
order of magnitude [8, 37, 49, 62]. At the transport layer, the phys-
ical queue cannot ensure the proper co-existence of different CC
algorithms that greatly differ by their optimization objectives (e.g.,
low delay vs. full utilization), their feedback signals (e.g., packet
loss signal vs. ECN signal vs. delay signal), and their ramp-up ramp-
down aggressiveness [58]. At the link layer, a virtual machine (VM)
may want precise specifications for both its inbound and outbound
bandwidth (i.e., no more, no less) [1, 14, 16, 33]. However, not only
is the physical queue unable to guarantee a bandwidth minimum,
but it can also release traffic that exceeds the specified bandwidth
when the specified bandwidth is less than the link capacity.

Many cloud providers have confirmed that these problems are
common in production environments [27, 32, 55]. Nevertheless,
shared physical queues are still extensively employed because
no practical and superior alternative exists. Specifically, per-flow
queue [26] seems like a plausible solution that works by isolating
traffic in dedicated queues, but in reality, it does not scale well
because the number of tenants in a data center is several orders
of magnitude greater than the number of per-flow queues avail-
able in today’s switches [3, 64]. Furthermore, per-flow queues can
also release traffic that exceeds the specified VM bandwidth at the
link layer. CC algorithms and rate limiters at end hosts help lessen
the problems with physical queues but they are far from sufficient.
First, although a well-designed CC algorithm allows fair sharing
of the network, it cannot support flexible and precise bandwidth
guarantees [63]. Second, although rate limiters at end hosts can
prevent overly aggressive injection of traffic, they cannot address
the aforementioned problems in the transport layer when different
CC algorithms share the physical queue. Furthermore, depending
on how the limiters are configured, the inbound bandwidth specifi-
cation of a VM can be under-utilized or violated depending on the
traffic pattern among VMs [59].

In this paper, we propose Augmented Queue (AQ), an in-network
abstraction to provide precise bandwidth guarantees for different

https://doi.org/10.1145/3603269.3604858
https://doi.org/10.1145/3603269.3604858

tra�c constituents. AQ can isolate tra�c from di�erent applications
and mitigate performance interference. It also provides di�erent
types of network feedback, such as packet loss, ECN, and delay, for
di�erent CC algorithms simultaneously. In addition, it can control
tra�c rates independent of the physical queue length.

The core idea of AQ to provide tra�c constituents with pre-
cise bandwidth guarantees is controlling their rate based solely on
their own tra�c. There are two challenges in the design of AQ.
The �rst challenge is determining what measure can be suitably
used for tra�c rate control. We observe that the physical queue
length is not a suitable option because it leads to in�exibility in
re�ecting the relation between the tra�c rate and the allocated
rate. Instead, AQ controls the rate with a deliberately-designed
measure function that can provably allow a tra�c constituent to
achieve the precise bandwidth guarantee in a shared network. The
second challenge lies in devising a scalable and e�cient approach
to control the tra�c rate for di�erent tra�c constituents separately.
AQ converts the measure function from a continuous domain to a
discrete domain, allowing the control of tra�c rate at the packet
level. It then di�erentiates and guarantees bandwidth for tra�c
from di�erent constituents based on the measure function, gener-
ates di�erent network CC feedback, and limits the rates of di�erent
tra�c constituents simultaneously. AQ can support millions of traf-
�c constituents for precise bandwidth guarantees, regardless of the
number of physical queues in switches.

In summary, we make the following contributions:

� We analyze the limitations of physical queues and discuss
the feasibility to relieve the data center's reliance on physical
queues for data center network sharing.

� We propose Augmented Queue (AQ), a scalable in-network ab-
straction to provide precise bandwidth guarantees for millions
of tra�c constituents simultaneously.

� We prototype AQ in both NS3 simulation and a To�no testbed.
The evaluations show that AQ can achieve precise bandwidth
guarantees for the application layer, transport layer, and link
layer. For example, when two applications expect to fairly share
a network, AQ can bound the di�erence of their shared band-
width between 0.99 and 1.01; but the di�erence with physical
queues and rate-limiting solutions can be arbitrary.

2 MOTIVATION
In today's data center networks, a switch is typically equipped
with physical queuesin which packets are bu�ered and transmitted.
These physical queues can absorb tra�c burstiness to reduce packet
drops. In addition, many congestion control (CC) algorithms rely on
the congestion information provided by physical queues, such as the
physical queue length and queuing delay, to optimize for low latency
and high network utilization. Physical queues possess two essential
properties: 1) they are shared by all the tra�c passing through them,
regardless of their applications and the applied CC algorithms; and
2) they require built-up queues to generate congestion signals,i.e.,
the incoming tra�c rate should surpass the line rate. These two
properties, we contend, impose fundamental limitations on physical
queues to provide precise bandwidth guarantees.

2.1 Tra�c from Di�erent Applications Can
Interfere in Physical Queues

Today's data centers can isolate the compute, memory, and disk
resources for di�erent applications [19, 27]. However, the network
is still shared by di�erent applications and their tra�c can inter-
fere with each other. They can experience unpredictable network
performance and their throughput can vary by an order of mag-
nitude [8, 36, 37, 49, 53, 60, 62]. In order to achieve predictable
network performance, we argue that data centers should provide
isolation for multiple applications to better share the network.

Goal 1: Provide network isolation for di�erent applications.
Each application has a speci�c bandwidth requirement and we can
regard an application as an entity. The sharing of the network for
an application on a bottleneck link is only determined by its own
allocated bandwidth, regardless of the tra�c protocols in use (i.e.,
TCP or UDP) and the number of �ows [45, 46, 53].

Example 1: Suppose multiple distributed applications are shar-
ing a network link. Each involves multiple VMs and can generate
an arbitrary number of �ows. They require an equal amount of
bandwidth on the network bottleneck link. Unfortunately, a physi-
cal queue alone cannot satisfy this requirement. For example, ap-
plications with UDP tra�c have the potential to monopolize the
bandwidth and starve applications with TCP tra�c. Furthermore,
when all applications generate TCP tra�c, the bandwidth sharing
among these applications is determined by the number of �ows
generated by each of them due to the fairness property of the CC
algorithms [4, 22, 34]. Because the number of �ows an application
can generate is arbitrary, the bandwidth sharing is also arbitrary.
Although a switch may have several physical queues, the number
is limited and it is unlikely that the switch can allocate a dedicated
physical queue to each application. Therefore, some applications
have to share a physical queue, resulting in arbitrary bandwidth
sharing among them.

2.2 Di�erent CC Algorithms Are Hard to
Coexist in Physical Queues

Many CC algorithms [4, 22, 34, 39, 68] have emerged in recent
years, targeting di�erent optimization objectives (e.g., high band-
width, network stability, and ultra-low latency), using di�erent
types of congestion signals (e.g., loss, ECN, and delay), and having
di�erent ramp-up ramp-down aggressiveness. Di�erent tenants
or even di�erent applications of a tenant may prefer di�erent CC
algorithms to meet their performance requirements. For example,
latency-sensitive applications, such as high frequency trading [20],
demand extremely low latency and thus may prefer CC algorithms
like Swift [34] and HPCC [39]. On the other hand, throughput-
intensive applications, such as distributed training [30, 38, 50],
prioritize high throughput and hence prefer CC algorithms like
DCTCP [4] and DCQCN [68]. In addition, when developing and
upgrading CC algorithms in data centers, multiple CC algorithms
can be expected to co-exist under the same cluster to avoid physical
partitioning and application migration. Therefore, we argue that
data centers should support multiple CC algorithms sharing the
network simultaneously.

Figure 1: Tra�c interference
between di�erent CC algo-
rithms when they share a
physical queue.

Figure 2: An example of bi-
directional bandwidth guaran-
tees for VMs.

Goal 2: Provide network isolation for di�erent CC algorithms.
A tenant can use di�erent CC algorithms for its di�erent applica-
tions based on di�erent optimization objectives and performance
requirements. We can regard a CC algorithm in a tenant as an en-
tity that can involve one or multiple applications. Each entity can
specify its expected bandwidth for sharing the bottleneck link in
data center networks.

Example 2: Suppose that multiple entities are sharing a network
with di�erent CC algorithms and they require to fairly share the
network. A physical queue alone cannot evenly distribute network
bandwidth among entities. Because tra�c from di�erent CC algo-
rithms shares the same physical queue, they have to su�er the same
degree of congestion. However, di�erent algorithms react di�er-
ently under the same congestion, leading to di�erent behaviors and
bandwidth sharing.

To illustrate the interference of di�erent CC algorithms, we
measure the throughput of di�erent CC algorithms using a shared
dumbbell topology with 10Gbps link capacity. We evaluate three
types of CC,i.e., drop-based: CUBIC [22] and NewReno [17]; ECN-
based: DCTCP [4]; and delay-based: Swift [34]. We use two CC
algorithms at a time, with each supporting 10 tra�c �ows. As shown
in Figure 1, di�erent CC algorithms cannot coexist gracefully and
fairly share the network fabric. For example, the DCTCP tra�c
aggressively captures a signi�cantly larger bandwidth compared
to those drop-based CC algorithms. Speci�cally, when sharing the
network bottleneck link with CUBIC, the throughput of DCTCP is
8.7Gbps while the throughput of CUBIC is only 0.7Gbps. Similarly,
Swift tra�c struggles when sharing the network fabric with other
CC algorithms, as its throughput falls below 0.2Gbps, leaving it
nearly starved.

Even with multiple physical queues, it is still di�cult to fairly
share the network bandwidth among di�erent entities. Due to the
limited number of physical queues in a switch, we cannot allocate
a dedicated queue to each entity or each tenant. Tra�c from some
entities or tenants has to share the same queue. One way to share
the queues is to allocate a physical queue to each CC algorithm,
and tra�c with the same CC from di�erent tenants needs to share a
physical queue. It is equivalent to the case that multiple distributed
applications using the same CC are sharing a physical queue, as
discussed in Section 2.1, and it is unable to satisfy the requirement
in Example 1.

2.3 Physical Queues Cannot Achieve Inbound
and Outbound Bandwidth Guarantees for
VMs

A tenant in a data center typically consists of multiple virtual ma-
chines (VMs) that communicate with each other. Because the net-
work is shared in a best-e�ort manner, it is common for tenants to
require reserved network bandwidth for their VMs to avoid tra�c
interference and to achieve predictable network performance [1, 8].
Analogous to physical machines with inbound and outbound band-
width regardless of the tra�c patterns, we argue that data centers
should reserve exact network bandwidth for VMs [14, 16, 33].

Goal 3: Provide bi-directional bandwidth guarantees for dif-
ferent VMs. A tenant can specify the expected network bandwidth
reservations for each of its VMs. We can take a VM as an entity.
Each VM has an illusion that it occupies a network cloud exclu-
sively with the reserved inbound and outbound bandwidth for any
tra�c patterns.

Example 3: Suppose multiple VMs are sharing a network and they
can communicate with each other. Each VM can have atra�c pro�le
for its bi-directional bandwidth,i.e., the network allocates an exact
bandwidth to both directions. Each VM expects to send tra�c to
and receive tra�c from all the other VMs simultaneously with the
guaranteed bandwidth.

Physical queues alone cannot satisfy this tra�c pro�le. They
can generate congestion signals, such as ECN and packet loss, to
inform end hosts to adjust their sending rates when they have
built-up queues. However, they cannot generate congestion signals
when the ingress tra�c line is always lower than the line rate. For
example, inFigure 2, four VMs are connected through a network
with 25Gbps link capacity. Each VM has a tra�c pro�le with a
5Gbps outbound bandwidth and a 5Gbps inbound bandwidth. Their
tra�c patterns among each other are arbitrary. Because the pro�led
bandwidth of each VM is lower than the link capacity, there are
no queues built-up in physical queues and they cannot generate
congestion signals for VMs to control their rates.

It is possible for rate limiters at end hosts to achieve outbound
bandwidth limits for VMs, but they cannot satisfy bi-directional
guarantees. For example, it is common to limit the outbound band-
width of VMs,i.e., their sending rates, but it can violate the inbound
bandwidth required by the tra�c pro�le. After deploying a rate
limiter of 5Gbps at each VM, a VM can receive at most 15Gbps
when three VMs send tra�c to the same one simultaneously, much
higher than the speci�ed 5Gbps inbound bandwidth.

In order to achieve the required inbound bandwidth guarantee,
one needs to assume the tra�c pattern among VMs to allocate
bandwidth to each VM pair [37, 53]. However, because the tra�c
pattern can be arbitrary, any allocation strategy can lead to un-
derutilized bandwidth. Take VM A as an example. To guarantee
its 5Gbps inbound bandwidth, one strategy is to equally split this
bandwidth among the other three VMs,i.e., each of them can send
tra�c to VM A at the rate of 5/3Gbps. It is likely that VM B and
VM C have no tra�c to send to VM A during a period and only
VM D communicates with VM A. Due to the mismatch between
the tra�c pattern and the speci�ed strategy, only one-third of the
inbound bandwidth of VM A is utilized.

2.4 Relieve the Reliance on Physical Queues

Based on the aforementioned discussion, we can conclude that
physical queues are incapable of supporting two fundamental and
critical functionalities: 1) to provide di�erent congestion signals
for di�erent CC algorithms; and 2) to limit the rates of distributed
applications, CC algorithms, and VMs. We observe thatachieving
these two functionalities does not necessarily depend on the physi-
cal queues, but the discrepancy between the allocated rate and the
tra�c rate (refer to Section 3.2). However, the key challenge is
how to capture the discrepancy for di�erent applications, CC algo-
rithms, and VMs, respectively. The recent trend of programmable
switches [6, 10, 23, 41] in data center networks provides a new
opportunity. Since programmable switches can support customized
packet processing and provide stateful memory [11], it is feasible
to di�erentiate tra�c, monitor and limit their rates separately, and
generate di�erent congestion signals, regardless of the number
of physical queues. Hence, we propose an in-network augmented
queue (AQ) abstraction to capture the discrepancy and provide
these two functionalities for tenants.

3 AUGMENTED QUEUE ABSTRACTION

In this section, we �rst introduce the design requirements for tra�c
rate control of di�erent entities. We then analyze the feasibility
to relieve the reliance on physical queues and explore alternative
options to achieve rate limiting and generate di�erent network
feedback. Finally, we provide a detailed design for AQ with a math-
ematical model and a framework that allows for better tra�c rate
control of di�erent entities.

3.1 Design Requirements

Before presenting the AQ abstraction, we �rst discuss three require-
ments that are necessary for e�ective tra�c rate control among
di�erent entities.

R1: Provide rate limiting for entities. Di�erent entities sharing
the network can specify their required bandwidth. For example, a
distributed application or a CC algorithm can expect an aggregated
bandwidth of all its tra�c on a network bottleneck; a VM can
also expect that both its inbound and outbound rates conform to
a speci�c tra�c pro�le. Each entity should be provided with the
illusion that its tra�c could exclusively use a network with the
allocated bandwidth.

R2: Provide di�erent network feedback for di�erent entities.
The tra�c of multiple entities can share a single physical queue
in the network. In case of network congestion, these entities can
make di�erent contributions to physical queuing. The network
should di�erentiate their di�erent contributions and provide di�er-
ent network feedback to regulate their tra�c accordingly. Because
di�erent entities can choose their preferred CC algorithms, the
network should simultaneously provide di�erent types of network
congestion signals, such as packet loss, ECN marking, and queuing
delay, based on di�erent con�gurations, such as the maximum limit
to drop packets, ECN thresholds, and target queuing delay. In addi-
tion, the network feedback of an entity should only depend on its

own tra�c and the generation of the feedback should be triggered
independently at di�erent times for di�erent entities.
R3: Scale to a large number of entities. Entities of di�erent
granularities can be formed based on di�erent requirements and
network scenarios, such as di�erent applications, di�erent CC al-
gorithms, and VMs sharing a network. Because of the increasing
number of applications, CC algorithms, and VMs in today's data
centers, there could be a large number of entities,e.g., hundreds of
thousands of entities, sharing the same physical link. The number
of physical queues in commodity switches cannot keep up with
this scale in cloud networks. A practical AQ abstraction must be
scalable to accommodate a large number of sharing entities in data
center networks.

3.2 Rethink What to Use for Tra�c Rate
Control

Suppose an entity has tra�c �ows from di�erent sourcesand these
�ows share a network bottleneck link. We de�ne theallocated rate'
of an entity as the bandwidth allocated to its tra�c in the bottleneck
link. The allocated rate can be equal to or less than the link capacity.
We also de�ne thearrival rateA¹Cº of an entity as the aggregated
throughput of its tra�c entering the bottleneck link at timeC.

Analogous to the analysis in Generalized Processor Sharing
(GPS) [31, 44, 65], we de�ne a source isbackloggedwhen it has
packets to be transmitted. Therefore, a source has two types of
time periods: backlogged periods and empty periods, and it has no
packets to send during the empty periods. Similarly, we de�ne an
entity is backlogged when it has any backlogged sources and an
entity is empty when it has no backlogged sources.

During backlogged periods of an entity, the goal of the tra�c
control is to ensure that

jA¹Cº � ' j Ÿ n•8Cin backlogged periods” (1)

wheren is an arbitrary small positive number. However, it is very
challenging to satisfy Expression (1) for every time point in back-
logged periods.A¹Cº is contributed by all the backlogged sources
and the set of backlogged sources is changing over time. Suppose
A¹Cº = ' at timeCand some sources turn to empty from backlogged
after timeC. The tra�c rates of backlogged sources need to be ad-
justed; otherwise, the arrival rate will be smaller than' . It takes
time for rate adjustment and Expression (1) cannot be satis�ed
during the adjustment.

Therefore, a practical goal of tra�c control during backlogged
periods is to ensure that the average ofA¹Cº over a given time inter-
val Xapproximates' . In other words, the tra�c volume entering
the bottleneck link duringXapproximatesX' , i.e.,

j
¹ Ç X

C
A¹Cº3C� X' j Ÿ n• ¹C• Ç X¼in a backlogged period. (2)

We can see that Expression (1) focuses on the rate di�erence for
every time point, but Expression (2) focuses on the byte di�erence
during a time interval.

Because we only care about the arrival rate in backlogged peri-
ods, we split the time into intervals¹0• C1¼, ¹C1• C2¼, ” ” ”, ¹C< • C< ¸ 1¼
according to the two types of time periods, which alternate in these
intervals. For example, suppose¹C8• C8̧ 1¼is a backlogged period,
then ¹C8̧ 1• C8̧ 2¼is an empty period.

In the following, we will discuss what can be used to control the
tra�c rate to satisfy Expression (2) for each entity. There are two
mechanisms for tra�c rate control: 1) the tra�c rate is adjusted
by a CC algorithm according to the network feedback; and 2) the
tra�c rate is limited by a rate limiter. We will discuss these two
mechanisms separately.

3.2.1 Tra�ic rate control with CC.In today's data center, the
network feedback for di�erent CC algorithms is heavily coupled
with physical queues. For example, packets are dropped when the
queue length reaches a limit; ECN is marked on packets when the
queue length exceeds a threshold; and queuing delay is determined
by the physical queue length.

However, this coupling leads to in�exibility that makes cer-
tain tra�c rate control outcomes unachievable. In Example
3 in Section 2.3, the allocated rate' of each VM is1•5 of the link
capacity. VMs are expected to receive feedback from the network
to inform them to decrease their tra�c rates whenA¹Cº is greater
than 5Gbps. However, there is no queue build-up in the physical
queue. Another example is that multiple entities can share the net-
work. Suppose the arrival rate of one entity is much lower than
its allocated rate, but the network is still saturated by tra�c from
other entities and the physical queue length exceeds the threshold
to generate network feedback. However, this entity should not be
one of them to receive feedback to reduce the tra�c rate.

Our proposal. In this paper, we decouple the network feedback
from the physical queue length and propose to adjust the tra�c rate
of an entity according to thediscrepancybetween its allocated rate
and arrival rate. In other words, the network feedback is determined
by the discrepancy, and the tra�c control of an entity is only related
to its own tra�c and independent of the tra�c from other entities.

Next, we will discuss how to de�ne the function for the discrep-
ancy between the allocated rate and the arrival rate to generate
network feedback and achieve Expression (2).

A strawman function for the discrepancy. Consider taking the
integrated di�erence betweenA¹Cº and' in a time interval»C• ÇX¼
as the discrepancy, de�ned as:

3¹C• ÇXº =
¹ Ç X

C
A¹Cº3C� X'” (3)

When the integrated di�erence is negative, it implies increasing the
tra�c rate, and vice versa. The integrated di�erence is a continuous
function with respect to time. It can be positive at the end of a back-
logged period. Though the integrated di�erence keeps decreasing
during the next empty period, it might be still greater than zero at
the beginning of the next backlogged period. Therefore, we de�ne
the strawman function as:

� ¹Cº =
�

� ¹C8º ¸ 3¹C8• Cº• if C2 ¹C8• C8̧ 1¼that is backlogged• (4)

maxf 0• � ¹C8º � ' ¹C� C8ºg• if C2 ¹C8• C8̧ 1¼that is empty” (5)

� ¹Cº is initialized as zero. One CC algorithm can use� ¹Cº as the
discrepancy to generate the network feedback to adjustA¹Cº. To
achieve Expression (2), it is equivalent to achieving the following
expression:

j� ¹C¸ Xº � � ¹Cºj Ÿ n• ¹C• ÇX¼in a backlogged period” (6)

(a) � ¹Cº is used. The average ofA¹Cº
approximates' , but A¹Cº can be much
higher than' .

(b) � ¹Cº is used.A¹Cº is close to' be-
cause the surplus is not allowed.� ¹Cº can
minimize tra�c bursts.

Figure 3: The varying arrival rate of an entity with di�erent
functions for the discrepancy. The applied CC overly reduces
the tra�c rate.

The strawman has limitations. Unfortunately, there are dis-
advantages when using� ¹Cº as the function for the discrepancy
because it allows an entity to use thesurplus, i.e., the value ofj� ¹Cºj
when � ¹Cº Ÿ 0 in backlogged periods. Figure 3(a) illustrates the
arrival rateA¹Cº of an entity and it uses� ¹Cº as the discrepancy
to generate network feedback with� ¹C1º = 0. The applied CC al-
gorithm aims for zero queuing delay; it overly reduces the tra�c
rate and leads to a negative� ¹Cº in backlogged periods. WhenA¹Cº
exceeds the allocated rate' , � ¹Cº becomes positive and the CC
algorithm aggressively decreasesA¹Cº from A0. Then� ¹Cº becomes
negative and the CC increasesA¹Cº until it reachesA1 and� ¹Cº ¡ 0
again. Because the surplus is used,A1 is higher thanA0. Similarly,
the arrival rateA2 in the next cycle can be even higher thanA1.
Although � ¹C1 ¸ � º = � ¹C1º = 0 and it achieves Expression 2, the
arrival rate can be either much higher or lower than' . It can lead
to severe queuing delays and even packet loss. For example, when'
is equal to the link capacity andA¹Cº is approachingA2, the network
congestion keeps worsening because the tra�c rate is increasingly
higher than the link capacity.

The A-Gap function for the discrepancy. We argue that the us-
age of surplus to generate network feedback should not be allowed.
We re�ne the strawman function to calculate the discrepancy of
each entity with the A-Gap as

� ¹C¸ nº = maxf 0• � ¹Cº ¸ 3¹C• Çnºg• (7)

where� ¹0º = 0. The A-Gap function is set to zero when� ¹Cº ¸
3¹C• ÇXº Ÿ 0, regardless of the period is backlogged or empty.

The A-Gap equals the physical queue length when the allocated
rate ' is the link capacity, but they are di�erent when' is smaller
than the link capacity. For example, the allocated rate' for an entity
is 5Gbps and the link capacity is 25Gbps. When the arrival rate is
6Gbps, its� ¹Cº ¡ 0, but the physical queue length is always zero.

Using� ¹Cº as the function for the discrepancy can address the
disadvantages resulted from using� ¹Cº as the function. Figure 3(b)
illustrates the arrival rateA¹Cº of an entity with � ¹Cº as the dis-
crepancy to generate network feedback. The arrival rate begins to
decrease when it reachesA0 and� ¹Cº bottoms out at zero. When the

	Abstract
	1 Introduction
	2 Motivation
	2.1 Traffic from Different Applications Can Interfere in Physical Queues
	2.2 Different CC Algorithms Are Hard to Coexist in Physical Queues
	2.3 Physical Queues Cannot Achieve Inbound and Outbound Bandwidth Guarantees for VMs
	2.4 Relieve the Reliance on Physical Queues

	3 Augmented Queue Abstraction
	3.1 Design Requirements
	3.2 Rethink What to Use for Traffic Rate Control
	3.3 Augmented Queue Design

	4 Applying Augmented Queues in Practice
	4.1 The Control Plane
	4.2 The Data Plane

	5 Evaluation
	5.1 Experimental Setup
	5.2 Network Performance of Applications
	5.3 Network Performance of CCs
	5.4 Network Performance of VMs
	5.5 Other Factors

	6 Discussions
	7 Related Work
	8 Conclusion
	References

