
DRAGONN: Distributed Randomized Approximate Gradients of Neural
Networks

Zhuang Wang * 1 Zhaozhuo Xu * 1 Xinyu Crystal Wu 1 Anshumali Shrivastava 1 2 T. S. Eugene Ng 1

Abstract
Data-parallel distributed training (DDT) has be-
come the de-facto standard for accelerating the
training of most deep learning tasks on massively
parallel hardware. In the DDT paradigm, the
communication overhead of gradient synchroniza-
tion is the major efficiency bottleneck. A widely
adopted approach to tackle this issue is gradi-
ent sparsification (GS). However, the current GS
methods introduce significant new overhead in
compressing the gradients, outweighing the com-
munication overhead and becoming the new ef-
ficiency bottleneck. In this paper, we propose
DRAGONN, a randomized hashing algorithm for
GS in DDT. DRAGONN can significantly reduce
the compression time by up to 70% compared to
state-of-the-art GS approaches, and achieve up to
3.52× speedup in total training throughput.

1. Introduction
Recent years have witnessed the popularity of Deep Learn-
ing (DL) in both research and industrial communities. Deep
Neural Networks (DNN) trained on massive amount of
data have experienced significant success in computer vi-
sion (Dosovitskiy et al., 2020; Tolstikhin et al., 2021), lan-
guage processing (Vaswani et al., 2017; Radford et al.,
2019), recommendation systems (Naumov et al., 2019) and
geophysics (Desai et al., 2021).

The Need for Data-parallel Distributed Training: Re-
cently, multilayer perceptron (MLP) models have demon-
strated improvement over state-of-the-art (SOTA) DL bench-
marks (Tolstikhin et al., 2021; Liu et al., 2021). However,
these MLP models introduce million-scale weight tensors.
As a result, large batch training over these giant weight

*Equal contribution 1Computer Science Department, Rice
University, Houston, TX, USA 2ThirdAI Corp, Houston, TX,
USA. Correspondence to: Anshumali Shrivastava <anshu-
mali@rice.edu>, T. S. Eugene Ng <eugeneng@cs.rice.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

tensors is infeasible due to the limited memory resources
of Graphic Processing Unit (GPU) (Owens et al., 2008).
To overcome this obstacle, data-parallel distributed train-
ing (DDT) becomes a widely adopted paradigm. In this
paradigm, the data loader partitions the dataset according
to the number of workers. Next, each worker only trains on
its own partition. Then, the model gradients generated from
each worker are synchronized. Finally, the weights at each
worker is updated by the synchronized gradients. This data
parallelism can scale the training of neural network over
large numbers of GPUs with reduced total training time.

Communication Bottleneck in Gradient Synchroniza-
tion: The innovations of hardware accelerators (Luo et al.,
2018; NVIDIA, 2021) and domain-specific software opti-
mization (Chen et al., 2018; Zheng et al., 2020; Chetlur
et al., 2014) have dramatically reduced the iteration time
of DNN training jobs. This trend results in more frequent
gradient synchronization in DDT. However, it is difficult for
the cloud network bandwidth to keep up with the pace of the
computation-related improvement (Sapio et al., 2019; Bai
et al., 2021). Moreover, the number of GPUs for DNN train-
ing keeps increasing due to the ever-growing training dataset,
which further worsens the communication time (Jiang et al.,
2020; Thakur et al., 2005). The communication overhead in
DDT has become a well-known performance bottleneck as
each GPU needs to transmit the full gradients for synchro-
nization (Fei et al., 2021; Huang et al., 2019; Aji & Heafield,
2017; Lin et al., 2017).

Gradient Sparsification for Efficient Communication:
Gradient sparsification (GS) (Strom, 2015; Aji & Heafield,
2017; Shi et al., 2021; Stich et al., 2018; Barnes et al., 2020)
has great potential to alleviate the communication bottle-
neck. GS approaches only select a subset of the original
gradients for synchronization. There exists two well-known
GS paradigms, namely exact TopK (Aji & Heafield, 2017)
and approximate TopK, such as deep gradient compression
(DGC) (Lin et al., 2017) and MSTopk (Shi et al., 2021). The
exact TopK method selects the exact top-k gradients while
approximate TopK selects the gradients with values greater
than an estimated threshold. Both approaches can save up
to 99.9% of the gradient exchange in DDT while preserving
the iteration-wise performance towards convergence. Ap-
proximate TopK can achieve higher practical training speed

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

than exact TopK because of the reduced overhead of sorting
operations.

Overhead in Gradient Sparsification: Unfortunately,
we have seen minimal practical benefits of the GS algo-
rithms (Agarwal et al., 2021; Xu et al., 2021). The main
reason comes from the overhead in compressing the gra-
dients. The SOTA GS system (Lin et al., 2017) requires
exact operations that extract approximate top gradients and
write them into memory for communication. The algorith-
mic level design of such operations leads to significant time
costs that limit the efficiency improvement of GS systems.
So far, there have been few demonstrations that the current
GS in any form can achieve the expected total acceleration
over full gradient synchronization.

Given the efficiency bottleneck of GS algorithms in DDT, it
is natural to ask the following question.

Is there any technique that can overcome the compression
overhead of GS in DDT while maintaining the iteration wise
convergence?

In this paper, we answer this question by proposing DRAG-
ONN, a randomized hashing algorithm for GS. We argue
that it is unnecessary to use exact operations on GPUs (i.e.,
parallel prefix sum (Blelloch, 1990; Harris et al., 2007))
because only approximate top-k gradients are required. To
resolve this exact-approximate mismatch, DRAGONN pro-
vides a randomized hashing algorithm that directly assigns
memory locations for each value in the approximate top-
k gradients. In this way, DRAGONN naturally supports
massively parallel gradient extraction as multiple threads
can write the gradients simultaneously. Moreover, we per-
form a series of system-level optimizations to maximize the
efficiency of DRAGONN.

Our Contributions: The main contributions of this paper
are summarized as follows:

• We propose DRAGONN, a randomized hashing algo-
rithm for GS in the DDT of neural networks. Through
the hashing algorithm, we significantly reduce the com-
pression overhead in GS while preserving the iteration
wise accuracy. We also upper bound its compression
error and provide a theoretical analysis on the general-
ization error of the models trained via DRAGONN.

• We perform system-level optimizations of DRAGONN.
We first introduce efficiency-aware tensor selection
over the neural network so that we only perform GS
on tensors leading to overall efficiency improvement.
We also introduce a sparse decoding method to ensure
that the decoding overhead does not increase linearly
with the number of GPUs.

• Our extensive evaluation in vision and recommenda-
tion shows that to reach the same level of convergence,

DRAGONN achieves up to 3.52× speedup in total
training time over DGC. Moreover, we provide detailed
micro-benchmarks that suggest DRAGONN saves up
to 70% of the compression time of current GS methods
while reducing the decoding overhead from linear with
the number of GPUs to nearly constant.

2. Background and Motivation
2.1. Data-parallel Distributed Training

Data-intensive training of neural networks (NN) on powerful
Graphic Processing Unit (GPU) (Owens et al., 2008) boosts
the success of Deep Leaning (DL) (LeCun et al., 2015).
Given massive amount of training examples, data-parallel
distributed training (DDT) (Shallue et al., 2019; Ben-Nun &
Hoefler, 2019; Li et al., 2020) has become one of the most
popular paradigms to scale out DL with multiple GPUs. In
this paradigm, the training set is partitioned into multiple
subsets. Each GPU has a replica of the training model that
trains on a specific subset. In each iteration, each GPU
consumes a mini-batch from its allocated subset as the input
of the training. Next, it propagates the mini-batch through
the NN model and calculates the loss function via forward
propagation. Then, it uses the loss value to compute the
gradients of each parameter in backward propagation. Fi-
nally, it synchronizes the gradient updates from all GPUs
to update the model parameters with a certain optimizer,
such as SGD (Zinkevich et al., 2010) and Adam (Kingma
& Ba, 2014). Training a DNN model is a process to refine
the model parameters with the above steps iteratively until
its convergence. In this paper, we focus on the synchronous
DDT because of its wide adoption (Abadi et al., 2016; Jiang
et al., 2020; Sergeev & Del Balso, 2018; Li et al., 2020).

2.2. Communication Bottleneck in DDT

The single-GPU iteration time of DNN training jobs has
been significantly reduced thanks to the advancement of
both DNN accelerators and domain-specific compiler tech-
niques. For example, the iteration time of ResNet50 with
one GPU has decreased by 22× in the last six years (Sun
et al., 2019). However, the cloud network bandwidth has
only seen a roughly 10× increase in the same period (Zhou
et al., 2020). This imbalance between the fast-growing
computing capability and the slower-growing communica-
tion bandwidth worsens the communication-computation
tense in DDT. It has been reported that the communication
time for gradient synchronization accounts for over 60%
of the total time for the training of BERT (Devlin et al.,
2018) or other Transformer models across 16 AWS EC2
instances, each with 8 NVIDIA V100 GPUs, in a 100Gbps
network (Bai et al., 2021). We denote the total overhead as
the cumulative time spent in procedures other than forward
and backward propagation in the DDT of neural networks.

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

220 221 222 223 224 225 226 227

Tensor size (Bytes)
0.0

0.5

1.0
Co

m
pr

es
sio

n/
To

ta
l DGC w. 1e-3

DGC w. 1e-2

(a)

219 221 223 225 227

Tensor size (Bytes)
100

101

To
ta

l o
ve

rh
ea

d
(m

s) Full
DGC
TopK

(b)

Figure 1. (a) the ratio between compression overhead and total
overhead in different tensor size (bytes). (b) The total overhead in
data-parallel distributed training versus tensor size (bytes).

2.3. The Need for Approximate TopK GS

In current GS approaches, exact TopK (Aji & Heafield,
2017) selects the exact top-k gradients at the cost of pro-
hibitive compression overhead. Deep gradient compression
(DGC) (Lin et al., 2017) achieves the SOTA performance in
DDT. It first estimates the kth largest absolute value from a
subset where each gradient in this set is uniformly sampled
from the gradient tensor. Next, DGC uses this approxi-
mate value as a threshold. Only gradients with absolute
values greater than this threshold is selected for synchro-
nization, as shown in Algorithm 3. The main reason for
DGC’s outstanding performance is that the approximate
TopK operation balances the trade-offs between accuracy
and efficiency. It preserves the accuracy by synchronizing
gradients with large absolute values while reduces the com-
pression overhead in exact sorting. Therefore, it stands out
as a major benchmark in GS.

2.4. The Limitations of Previous Approximate GS

Our experimental observation shows that DGC still intro-
duces costly compression overhead, which degrades the
training performance of DDT in practice. For instance, if
we perform DGC for vision transformer (Dosovitskiy et al.,
2020) on 16 Nvidia V100 GPUs with 0.001 compression
ratio in a 25Gbps network, the expected speedup over full
gradient synchronization is 2.81×. However, in practice,
we could only observe 2.14× speedup.

To further evaluate the impact of compression procedure in
DGC, we study the ratio between the compression overhead
and the total overhead in the DDT of a tensor over 16 Nvidia
V100 GPUs. We present this ratio versus the tensor size in
Figure 1(a) with compression ratio 0.001 and 0.01. From
the figure, we observe that when the tensor size exceeds 224

bytes, the compression overhead outweighs other overheads
such as communication overhead and becomes the major
efficiency bottleneck. The communication time has been
significantly reduced and it can be close to the communica-
tion latency after compression. However, the compression
overhead increases with the tensor size. So does the gap

Table 1. The number of operations in existing approximate TopK
and hashing-based gradient compression algorithms to get the
indices of the top gradients on CPUs and GPUs. d and l are the
number of gradients and of gradients greater than the threshold.
(comp. compare)

GS CPU GPU

Threshold d comp. 2d comp.,2d− 2 add.,
d− 1 swap.

Hashing d comp., l hash. d comp., l hash.
Lower bound d comp. d comp.

between the communication time and compression over-
head. Because compression competes for GPU resources
with backward propagation, it delays the training and thus
degrades the performance.

Moreover, for smaller tensor that compression overhead
does not exceed 50% of the total overhead, the existence of
compression procedure still degrades the practical perfor-
mance. To demonstrate this, we study the total overhead of
full gradient synchronization and DGC as the tensor size
increases when we communicate the tensor over 16 Nvidia
V100 GPUs via compression ratio 0.001. Figure 1(b) shows
that for tensor size smaller than 221 bytes, the full gradi-
ent synchronization outperforms DGC in efficiency even if
DGC can significantly save the network traffic volume. It is
because there is a constant overhead to launch GPU kernels
for compression (Sergeev & Del Balso, 2018; Wang et al.,
2021) and it is even greater than the saved communication
time for small tensors. The exact TopK always performs
worse than the full gradient synchronization.

To fully unleash the benefits of GS for DDT, we must design
efficient compression algorithms to minimize the compres-
sion overhead while preserving the performance in conver-
gence. In addition, we must carefully enable compression
for tensors to avoid the over-compression penalties.

3. DRAGONN: A Hashing-based Compressor
3.1. The Inefficiencies of Previous Approximate GS

Although DGC (Lin et al., 2017) can reduce the overhead of
sorting operations, its compression overhead still greatly di-
lutes the benefits gained from communication time savings.
The performance bottleneck of DGC lies in the process of
extracting the indices of the top gradients (Lines 2-3 in Al-
gorithm 3, Appendix B). When the compression operation
is performed on CPUs, it needs d comparison operations to
determine the gradients greater than the threshold, where
d is the number of gradients in a tensor 1. Note that this
is the lower bound of the number of operations to extract
the top gradients. It then writes the selected gradients along

1There is no need to have the mask with CPU compression.

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Mask with thr=2

1 0 3 5 2 1

0 0 1 1 1 0

2 3 4

Select nonzero indices

3 5 2

Values

Hash with thr=2

1 0 3 5 2 1

2 4 3

3 2 5

Values

(a) DGC (b) Ours

Figure 2. (a) The DGC algorithm for extracting top gradients and
write it into the memory (b) DRAGONN. We overcome the over-
head of nonzero indices selection by direct hashing.

with their indices into the memory sequentially. GPUs are
widely used to speed up compression operations (Xu et al.,
2021). Parallel prefix sum (Harris et al., 2007) is the SOTA
algorithm to select nonzero indices to accelerate this pro-
cess (Meta, 2022; Google, 2022). In order to avoid the
sequential memory writing issue, it performs 2d compari-
son, 2(d − 1) add , and d − 1 swap operations, resulting
in scanning the tensor multiple times and incurring non-
negligible overheads (refer to Appendix C). The numbers
of operations to get the indices of the top gradients are in
Table 1.

The number of memory access in DGC’s compression op-
erations with GPUs is around 7× higher than the lower
bound 2. Moreover, parallel prefix sum builds a balanced
binary tree for parallel computing, leading to O(log d) steps
in a sequence. These two factors explain the high compres-
sion overheads of DGC (and other existing approximate GS
algorithms) observed in Section 2.4.

Unnecessary Exact Algorithm for Approximate Gradi-
ent Compression: DGC is an approximate gradient com-
pression algorithm, but its performance bottleneck lies in
parallel prefix sum, which is an exact algorithm. We argue
that replacing parallel prefix sum with an approximate algo-
rithm does not affect the performance in the convergence
of GS in DDT. Moreover, the approximate algorithm could
significantly reduce the compression overhead.

3.2. DRAGONN

We design DRAGONN, a hashing-based compression algo-
rithm to minimize the compression overhead, as shown in
Algorithm 1. It allocates memory for the indices in advance
according to the compression rate. It first compares the gra-
dient values with the threshold. If a gradient (or its absolute
value) is no less than the threshold, its index is mapped into
an integer within a range, i.e., from 0 to m−1. It then writes
the index into the memory with the offset of the mapped
integer. If multiple indices are mapped into the same integer,
they are written into the same position and the previous

2There are two memory accesses in add and swap operations.

Algorithm 1 DRAGONN
Input: gradient G, threshold t, memory size m, hash function h
Output: Gc, I
d← len(G)
I ← -1m

for i = 0 to d− 1 do
if |G[i]| ≥ t then
j ← h(i)
I[j]← i

end if
end for
Gc = G[I]

index is overwritten by the latter ones. After this step, the
indices of the top gradients are extracted. It then obtains
the gradients based on the indices. An index −1 indicates
that there is no index written into this position. DRAGONN
sets this index and the corresponding gradient to 0. Figure 2
compares DGC and DRAGONN. The difference lies in how
they extract the indices of the top gradients.

Algorithm Complexity. DRAGONN has d comparison
operations and l hashing operations, where l is the number
of gradients greater than the threshold, to get the indices of
the top gradients with both CPUs and GPUs for compres-
sion, as shown in Table 1. In addition, unlike parallel prefix
sum, there is no dependency among the hashing operations.
The lower bound of the overhead is d comparison opera-
tions as it has to at least scan and compare all the gradients
once. Therefore, the hashing-based GS can achieve the
near-optimal performance for approximate TopK gradient
compression.

Strength in Parallel Computing. The critical path in ap-
proximate GS is the sequential memory writing for the in-
dices of top gradients (Line 14 in Algorithm 3). In contrast,
DRAGONN writes an index into the position based on the
mapped integer and it allows for hash collisions (refer to
Section A.2 for the analysis). Because memory writing is an
atomic operation on GPUs (Owens et al., 2008), it guaran-
tees that there is exact one valid index in the position when
hash collisions occur. Multiple threads can perform the hash
functions and memory writing simultaneously without extra
operations. An interesting property of DRAGONN is that,
unlikely DGC, the indices in the memory are in random
orders. Because gradients are independent with each other
in the memory, the order of them does not affect the results
and there is no need to sort them.

Moreover, we provide a theoretical analysis on the conver-
gence and generalization of DRAGONN in Appendix A.

4. Deploying DRAGONN in Practice
DRAGONN is a tensor wise approximate GS with near-
optimal compression overhead. As a DNN model typi-

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Algorithm 2 DDT via DRAGONN
Input: weights θ, learning rate η, number of gradients d
Output: g̃
g := stochastic gradient(θ)
if Tcomp(d) < Tfull(d)− Tspr(d) then // Eq.(1)

gc := DRAGONN(g)
gm := communicate(gc)
g̃ := sparse decode(gm)

else
g̃ = allreduce(g)

end if

cally consists of multiple tensors, a practical challenge we
must address is how to deploy and optimize DRAGONN in
DDT for better efficiency improvement. In this section, we
present the system-level optimizations for the performance
of DRAGONN in practice. We start with an overview of
components in the GS based DDT system via DRAGONN.
Then, we introduce the efficiency-aware tensor selection.
Finally, we introduce the sparse decoding technique to im-
prove the aggregation efficiency.

4.1. Overview

Algorithm 2 describes the DDT via DRAGONN. Given
a tensor with d gradients, DRAGONN first determines
whether GS has benefits based on a cost-benefit analysis
considering both the system configuration and compression
algorithm (Section 4.2). If there are no benefits, it directly
synchronizes the tensor with Allreduce without compres-
sion. Otherwise, it compresses the tensor via DRAGONN
and resorts to other collective communication operations
(e.g., Allgather) for the communication. Each worker then
receives the compressed tensors and decodes them with the
proposed sparse decoding mechanism (Section 4.3).

4.2. Efficiency-aware Tensor Selection

A strawman to deploy DRAGONN in DDT is to apply it
on all tensors in a DNN model (Xu et al., 2021; Shi et al.,
2021). Unfortunately, it incurs over-compression penalties
and harms overall performance (Bai et al., 2021). In the
DDT of a DNN model with multiple tensors, the communi-
cation time is mainly contributed by large tensors and small
tensors are not the culprit of the poor scalability. Because
the communication latency can dominate the communica-
tion time for small messages (Nvidia, 2018; Sergeev &
Del Balso, 2018; Li et al., 2020), there are no benefits to
further reduce the size of small tensors due to the communi-
cation latency. Moreover, compression incurs computational
overheads and competes for GPU resources with training.
Hence, there is no guarantee that compressing tensors can
always improve the training performance.

We develop a general cost-benefit analysis to determine
the set of tensors that should be compressed to avoid over-
compression penalties. We must ensure that the compression
time is smaller than the communication time savings:

Tcomp(d) < Tfull(d)− Tspr(d), (1)

where d is the number of gradients in a tensor, Tcomp(d) is
the compression time, Tfull(d) and Tspr(d) are the communi-
cation time without and with compression, respectively.

Suppose the number of workers involved in the training is K,
the network bandwidth is B, and the size of each gradient is
A. The communication cost models follow the analysis in
the literature (Patarasuk & Yuan, 2009; Thakur et al., 2005;
Fei et al., 2021). There are many available communication
schemes for the gradient synchronization (Jiang et al., 2020;
Sergeev & Del Balso, 2018; Xu et al., 2021; Bai et al., 2021),
while we take Ring Allreduce and Allgather as the examples
to quantify the cost-benefit analysis.

Ring Allreduce is a widely-adopted Allreduce algorithm for
gradient synchronization in DDT without compression (Li
et al., 2020; Sergeev & Del Balso, 2018). The communica-
tion time for a tensor with the size of dA is

T (d) = 2(K − 1)(α+
dA

KB
),

where α is the one-way network latency between workers.

However, the aggregation operations of compressed gradi-
ents are not associative, which makes compressed tensors
not allreducible (Agarwal et al., 2021). Allgather is com-
monly used for the gradient synchronization with gradient
compression (Xu et al., 2021; Wang et al., 2021). Hence,
the communication time after compression becomes

Tcomp(d) = (K − 1)(α+
γdA

B
),

where γdA is the tensor size after compression. Therefore,
we show that

Tfull(d)− Tspr(d) = (K − 1)(α+ (1/K − γ)dA/B)

Note that other collective communication operations can
also be applied to this cost-model analysis.

The compression time consists of two parts: encoding time
and decoding time. Given a compression algorithm and the
compression ratio, we can easily profile both the encoding
and decoding time offline as a function of the number of
gradients in a tensor. We then have the cost model for the
compression time Tcomp(d).

We compare Tcomp(d) and Tfull(d) − Tspr(d) to decide
whether it has benefits to enable compression for a tensor.
The decision depends on the tensor size, the compression
algorithm, the compression ratio, the number of workers,
the network bandwidth, and the computing capacity.

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

4 8 16
The number of GPUs

0
1
2
3
4

Im
ag

es
/s

ec

1e3
FULL
DGC
DRAGONN
TopK
Linear-Scaling

(a) ResNet50

4 8 16
The number of GPUs

0.0

0.5

1.0

1.5

Im
ag

es
/s

ec

1e3
FULL
DGC
DRAGONN
TopK
Linear-Scaling

(b) ViT

4 8 16
The number of GPUs

0.0

0.5

1.0

1.5

2.0

Im
ag

es
/s

ec

1e3
FULL
DGC
DRAGONN
TopK
Linear-Scaling

(c) MLP-Mixer

4 8 16
The number of GPUs

0

1

2

3

Sa
m

pl
es

/s
ec

1e5
FULL
DGC
DRAGONN
TopK
Linear-Scaling

(d) XML
Figure 3. The DDT speed with different number of GPUs via different GS approaches for four DNN models.

Table 2. Overall Training speedups of DRAGONN over DGC and
FULL when reaching 94% accuracy in Cifar10 and 80% accuracy
in Wiki10-31K.

Speedups ResNet50 ViT MLP-Mixer XML
DGC 1.42× 2.15× 1.72× 3.52×
FULL 2.40× 2.45× 6.04× 35.9×

4.3. Sparse Decoding

Because the compressed tensors are not allreducible, each
worker receives K compressed tensors after communica-
tion and they must be decoded before the weight updates.
To handle this, current GS approaches first decode each
compressed tensor into a dense format and then perform
aggregation operations (dense decoding) (Xu et al., 2021;
Wang et al., 2021). This procedure generates a sparse-to-
dense overhead that linearly increases with the number of
GPUs. As the sparse-to-dense conversion and aggregation
operations are non-negligible on GPUs, the decoding proce-
dure could greatly degrade the final performance.

We design a sparse decoding mechanism to reduce the de-
coding time. Because the index-value pairs in compressed
tensors are independent from each other, we batch these K
compressed tensors, i.e., concatenate all of them, for one
decoding operation. After decoding, there is only one dense
tensor so that we need no aggregation operations. This
batching mechanism is also applicable to other GS algo-
rithms, such as DGC, TopK, and MSTopk (Shi et al., 2021).
The sparse decoding is equivalent to dense decoding and it
can support the indices in any order.

5. Experiment
In this section, we demonstrate the efficiency of our ap-
proach in DDT. We start with presenting the testbed. Next,
we present an evaluation of our approach over end-to-end
training. Finally, we showcase several micro-benchmarks
as an ablation study.

Testbed: We perform experiments on 16 Nvidia Tesla V100-
32GB GPUs. Each machine has 8 GPUs, 96 CPU cores
(Intel Xeon 8260 at 2.40GHz) and 256 GB of RAM. The
GPU-to-GPU interconnection is supported by PCIE and the

network bandwidth connecting machines is 25Gbps. The
machines run Debian 10 operating system and the software
environment includes CUDA 11.0, PyTorch-1.8.0, NCCL-
2.7.8., and Hovorod-0.19.1. Memory momentum correc-
tion (Lin et al., 2017) is used as the error-feedback mecha-
nism to preserve the training accuracy of all the evaluated
scarification algorithms.

5.1. Main Results

We present the results that demonstrate our method’s ad-
vantage in neural network training over DGC (Lin et al.,
2017) and TopK (Aji & Heafield, 2017). Specifically, we
would like to answer the following questions: (1) What are
the total speedups of DRAGONN over DGC and TopK? (2)
Does DRAGONN preserve the iteration wise convergence
in test accuracy as full synchronization (FULL)?

Settings: We compare the performance of DRAGONN
against DGC, TopK and full synchronization in the data-
parallel distributed training of four deep models. For vi-
sual recognition, we choose ResNet50 (He et al., 2016),
Vision Transformer (ViT) (Dosovitskiy et al., 2020) and
MLP-Mixer (Tolstikhin et al., 2021) for study. The input
image size is set to 224× 224× 3 for all these models. We
set the evaluation metric to be the accuracy. We evaluate
DRAGONN and baseline methods on the DDT of ResNet50
over ImageNet-1K (Deng et al., 2009) dataset. We use
Adam (Kingma & Ba, 2014) as optimizer with batch size
64 and learning rate 0.1. After linearly warming up the
learning rate, we reduce by 10 on the 30th, 60th and 80th
epochs. We also evaluate DRAGONN and baseline meth-
ods over ViT and MLP-Mixer on fine-tuning tasks: given
weights pretrained on ImageNet-21k (Ridnik et al., 2021),
we perform DDT on Cifar10 (Krizhevsky et al., 2009). We
set Adam (Kingma & Ba, 2014) as optimizer with learning
rate 10−5 and batch size 32.

Moreover, we compare the performance of our method
against DGC for DDT over giant weight tensors. We choose
multi-label classification to showcase this comparison. We
use the Wiki10-31K dataset in the extreme classification
repository (Bhatia et al., 2016). There are 14146 training
samples and 6616 test samples. We embed the input fea-

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

25 50 75 100
Iteration (×103)

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

FULL
DGC
DRAGONN
TopK

(a) ResNet50

0 250 500 750 1000
Iteration

0.92

0.94

0.96

0.98

A
cc

ur
ac

y

FULL
DGC
DRAGONN
TopK

(b) ViT

0 250 500 750 1000
Iteration

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

FULL
DGC
DRAGONN
TopK

(c) MLP-Mixer

0 10 20 30 40
Iteration

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

FULL
DGC
DRAGONN
TopK

(d) XML
Figure 4. Convergence comparison of four DNN models with different GS.

222 224 226 228

Tensor size (Byte)

100

101

102

103

En
co

di
ng

 ti
m

e
(m

s) DGC
DRAGONN
TopK

(a)

4 GPUs 8 GPUs 16 GPUs0
1
2
3
4
5

De
co

di
ng

 ti
m

e
(m

s) Dense
Sparse

(b)
Figure 5. (a) the encoding time of various compression algorithms
in different tensor sizes (bytes) (b) the decoding time of dense
decoding and sparse decoding.

tures following (Chen et al., 2020) and only train on the
last linear layer. The last layer has input 4096 and outputs
30938. As we set the linear layer without bias, we perform
distributed training over a single giant tensor with 126.72M
parameters. The batch size is 256. We use learning rate
0.001 for Wiki10-31K. For evaluation, we denote accuracy
as the P@1 (top-1 accuracy) as our metrics. We denote the
model as XML.

Speedups: we present the DDT speed on 4, 8 and 16 GPUs
of DRAGONN and baselines in Figure 3. As shown in
the figure, when we perform DDT over 16 GPUs, DRAG-
ONN performs 2.40× speedup over full synchronization in
ResNet50, while DGC performs 1.68× speedup. DRAG-
ONN performs 2.61× speedup over full synchronization
in ViT, while DGC performs 2.14× speedup. DRAG-
ONN performs 2.57× speedup over full synchronization in
MLP-Mixer, while DGC performs 2.06× speedup. DRAG-
ONN performs 22.4× speedup over full synchronization in
XML, while DGC performs 10.2× speedup. Meanwhile,
TopK (Aji & Heafield, 2017) introduces large overhead in
compression and has the slowest speed. These results an-
swer the first question: DRAGONN achieves significant
speedups over baselines in various tasks.

Convergence: We present the iteration wise convergence of
DDT with four models in Figure 4(b). We observe that both
DRAGONN and TopK approximate the full synchronization
better than DGC. For XML, it takes even 1.6× more itera-
tions for DGC than DRAGONN to converge. Combining
the iteration wise performance and time wise speedup on 16
GPUs, we summarize the total time speedup of DRAGONN
over baselines in Table 2. These results indicate that DRAG-
ONN achieves at most 3.52× speedup over DGC and 35.9×

speedup over full synchronization.

Discussion: The speedup of DRAGONN over DGC in-
creases with the number of GPUs. This phenomenon demon-
strates DRAGONN’s strength in scalable DDT. Moreover,
we expect that DRAGONN will become more beneficial
in faster networks (e.g., NVLink for the GPU-to-GPU in-
terconnection or 100Gbps network bandwidth) because the
ratio of communication to compression overheads shifts
to the latter. Furthermore, the performance improvements
of MLP-Mixer and ViT are consistent as long as the input
images have the same shape. Therefore, the advantages of
DRAGONN are further validated.

5.2. Micro-benchmarks

In this section, we would like to investigate the components
in DRAGONN that help its speedup in DDT. We evaluate
the effectiveness of DRAGONN’s three components: 1)
the hashing-based compressor, 2) efficiency-aware tensor
selection, and 3) sparse decoding.

Figure 5(a) compares the encoding time of TopK (Aji &
Heafield, 2017), DGC, and DRAGONN over various tensor
sizes with the compression ratio 0.001. We can see that
exact TopK algorithm performs much worse than approx-
imate TopK algorithms. Therefore, we only provide the
comparison of DRAGONN with DGC. DRAGONN has up
to 70% lower encoding time than DGC thanks to its efficient
memory writing on GPUs. For a tensor with 512MB, the en-
coding time of DRAGONN and DGC is 13.2ms and 35.4ms,
respectively. As a comparison, the model size of XML with
Wiki10-31K dataset is 507MB and its single-GPU iteration
time is 25 ms. Therefore, DRAGONN reduces the major
overhead in the DDT of XML. In addition, we observe that
the encoding time almost keeps constant with the compres-
sion ratio ranging from 0.0001 to 0.01, which is consistent
with the number of operations listed in Table 1.

Figure 5(b) compares the performance of dense decoding
and sparse decoding with the tensor size as 64MB and the
compression ratio as 0.001. The decoding time of dense de-
coding linearly increases with the number of GPUs because
of the conversion from sparse tensors into dense formats.
In contrast, the decoding time of sparse decoding keeps

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

0.0 0.1 0.2 0.3
Time cost (s)

+Decoding

+Selection

DRAGONN

DGC

FULL
Compute. Sync.

(a) ResNet50

0.0 0.2 0.4 0.6 0.8 1.0
Time cost (s)

+Decoding

+Selection

DRAGONN

DGC

FULL
Compute. Sync.

(b) ViT

0.0 0.2 0.4 0.6
Time cost (s)

+Decoding

+Selection

DRAGONN

DGC

FULL
Compute. Sync.

(c) MLP-Mixer

0.00 0.02 0.04 0.06 0.08
Time cost (s)

+Decoding

+Selection

DRAGONN

DGC

Compute. Sync.

(d) XML

Figure 6. Impacts of the three components (hashing-based compressor, efficient-aware tensor selection and sparse decoding) on the
per-iteration time costs of the computation (Compute.) and synchronization (Sync.).

0 50 100 150 200
Iteration

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y SignSGD
DGC
DRAGONN
Random

(a)

SignSGD DGC DRAGONN Random
Compressor

0.0

0.5

1.0

1.5

2.0

Sa
m

pl
es

/s
ec

1e5

(b)

Figure 7. For DDT of XML Wiki10-31K model over 16GPUs, we
plot (a) accuracy versus number of iteration, (b) training speed of
SignSGD, DGC, Random Sampling (Random) and DRAGONN.
We set the compression ratio of SignSGD as 1

32
(minimum permit-

ted ratio). We set compression ratio as 10−3 for other methods.

constant thanks to the batching mechanism. Note that the
speedups of sparse decoding is over K×, where K is the
number of GPUs, because it also saves the computational
overhead of aggregations.

We then evaluate the individual performance gains of the
three components in end-to-end training with 16 GPUs.
The computation latency is the time for forward and back-
ward propagation, and it keeps constants in DDT (Zhang
et al., 2020; Li et al., 2020). The synchronization latency
combines the communication and compression time. It
can overlap with computation in the training of ResNet50,
ViT, and MLP-Mixer, as shown in Figure 6(b) and 6(c).
The speedups of DRAGONN-only (i.e., only applying the
hashing-based compressor) over DGC are 1.33×, 1.21×,
and 1.25× for ResNet50, ViT, and MLP-Mixer in terms
of the synchronization latency. The two system optimiza-
tion techniques can further increase the speedups to 1.92×,
1.35×, and 1.39×, respectively. Because XML has only
one layer, there is no overlap between its computation and
synchronization. Figure 6(d) shows that the speedup of
DRAGONN-only for its synchronization latency is 1.91×.
The sparse decoding mechanism can further increase the
speedup to 4.33×.

5.3. More Comparisons

In this section, we compare DRAGONN with two other
representative compression algorithms, i.e., GS with

1/4 1/8 1/16 1/32
Compression ratio

1.0

1.5

2.0

Sp
ee

du
ps

 n
or

m
al

ize
d

 to
 fu

ll
sy

nc
hr

on
iza

tio
n QSGD

DGC
DRAGONN

(a) MLP-Mixer

1/4 1/8 1/16 1/32
Compression ratio

1.0

1.5

2.0

Sp
ee

du
ps

 n
or

m
al

ize
d

 to
 fu

ll
sy

nc
hr

on
iza

tio
n QSGD

DGC
DRAGONN

(b) ViT
Figure 8. Training speedups versus the compression ratios.

random sampling (Random) (Stich et al., 2018) and
SignSGD (Karimireddy et al., 2019), which is a 1-bit quan-
tization algorithm. The evaluated model is XML on Wiki10-
31K dataset and the number of GPUs is 16. Note that the
compression ratio is 1

32 for SignSGD and 10−3 for others.
Figure 7(a) shows that DRAGONN outperforms baselines
with less iterations to converge, even when SignSGD keeps
31.25× gradient values than DRAGONN. Figure 7(b) dis-
plays the training speed of four methods. DRAGONN out-
performs DGC and SignSGD with faster speed. Although
random sampling outperforms DRAGONN in the training
speed, it requires 15.1× iterations to converge. Overall,
DRAGONN achieves 14.1× speedup over random sam-
pling. We also compare the speedups of DRAGONN, DGC,
and QSGD (Alistarh et al., 2017) in different compression
ratio for ViT and MLP-Mixer in Figure 8.

6. Related Work
Besides DGC, many GS algorithms are proposed to ad-
dress the communication bottlenecks by reducing the traffic
volume. The TopK algorithm (Aji & Heafield, 2017) is a
well-known GS paradigm to reduce the traffic volume for
distributed training. Unfortunately, its exorbitant operation
overhead outruns the saved communication time and can
harm the practical performance (Xu et al., 2021; Shi et al.,
2021; Agarwal et al., 2021). RandomK (Stich et al., 2018)
and its extension (Barnes et al., 2020) randomly selects a
subset of gradient for synchronization, but they may down-
grade the model’s performance in convergence rate. Among
the method proposed above, the compression time still per-
forms as the major efficiency bottleneck. MSTopk (Shi et al.,

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

2021) also notices the compression overhead in DGC, but
the focus is the threshold search process and it compresses
all tensors for communication.

Because the aggregation operations of sparse tensors are not
associative (Xu et al., 2021; Agarwal et al., 2021), Allre-
duce (Thakur et al., 2005) cannot be used for the gradi-
ent synchronization of compression-enabled DDT. Several
algorithms, such as Ok-Topk (Li & Hoefler, 2022), Spar-
CML (Renggli et al., 2019), and gTopk (Shi et al., 2019),
are recently proposed to optimize communication for the
aggregation of sparse tensors after compression operation.
However, DRAGONN focuses on directly minimizing the
operation cost in extracting the topk elements before com-
munication. DRAGONN and these algorithms solve differ-
ent problems and thus, are orthogonal and complementary.

Other than gradient sparsification, quantization is another
popular types of gradient compression algorithms. It de-
creases the precision of gradients to reduce the traffic vol-
ume. Gradients in FP32 can be mapped to fewer bits, such
as 8 bits (Dettmers, 2015; Alistarh et al., 2017), 2 bits (Wen
et al., 2017), and even 1 bit (Seide et al., 2014; Karimireddy
et al., 2019). The compression rate of quantization is at most
32×, much lower than that of GS. These works focus on the
design of compression algorithms, but they do not consider
the system-level optimization for the overall performance.

7. Conclusion
In this work, we propose DRAGONN: a randomized gra-
dient sparsification (GS) algorithm for data-parallel dis-
tributed training (DDT) of neural networks. We identify the
overhead of current GS approaches and propose a hashing-
based randomized algorithm to tackle this bottleneck. We
show that, with our compression techniques, DRAGONN
achieves up to 3.52× speedup over the current state-of-the-
art GS algorithm. Moreover, the promising scalability of
DRAGONN indicates its strength in DDT with increasing
number of workers. We hope DRAGONN would open the
door for more randomized algorithm in DDT.

8. Acknowledgement
Zhuang Wang, Xinyu Crystal Wu and T. S. Eugene Ng
are supported by the National Science Foundation CNS-
1718980, CNS-1801884, and CNS-1815525. Zhaozhuo Xu
and Anshumali Shrivastava are supported by the National
Science Foundation IIS-1652131, BIGDATA-1838177,
AFOSR-YIP FA9550-18-1-0152, the ONR DURIP Grant,
the ONR BRC grant on Randomized Numerical Linear Al-
gebra and the Ken Kennedy Institute BP fellowship. We
would like to thank Ben Coleman and Zhenwei Dai for
helpful discussions, and the anonymous reviewers for their
valuable feedback.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. Tensorflow: A system for
large-scale machine learning. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pp. 265–283, 2016.

Agarwal, S., Wang, H., Venkataraman, S., and Papail-
iopoulos, D. On the utility of gradient compres-
sion in distributed training systems. arXiv preprint
arXiv:2103.00543, 2021.

Aji, A. F. and Heafield, K. Sparse communication for dis-
tributed gradient descent. In Conference on Empirical
Methods in Natural Language Processing, 2017.

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, pp. 1709–1720, 2017.

Bai, Y., Li, C., Zhou, Q., Yi, J., Gong, P., Yan, F., Chen, R.,
and Xu, Y. Gradient compression supercharged high-
performance data parallel dnn training. In The 28th
ACM Symposium on Operating Systems Principles (SOSP
2021), 2021.

Barnes, L. P., Inan, H. A., Isik, B., and Özgür, A. rtop-k: A
statistical estimation approach to distributed sgd. IEEE
Journal on Selected Areas in Information Theory, 1(3):
897–907, 2020.

Basu, D., Data, D., Karakus, C., and Diggavi, S. Qsparse-
local-sgd: Distributed sgd with quantization, sparsifica-
tion and local computations. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Ben-Nun, T. and Hoefler, T. Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis.
ACM Computing Surveys (CSUR), 52(4):1–43, 2019.

Bhatia, K., Dahiya, K., Jain, H., Kar, P., Mittal,
A., Prabhu, Y., and Varma, M. The extreme
classification repository: Multi-label datasets and
code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html.

Blelloch, G. E. Prefix sums and their applications. In Sythe-
sis of parallel algorithms, pp. 35—60. Morgan Kaufmann
Publishers Inc., 1990.

Carter, J. L. and Wegman, M. N. Universal classes of hash
functions. Journal of computer and system sciences, 18
(2):143–154, 1979.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song,
Z., Shrivastava, A., and Re, C. Mongoose: A learnable
lsh framework for efficient neural network training. In
International Conference on Learning Representations,
2020.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
578–594, 2018.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. cudnn:
Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Desai, A., Xu, Z., Gupta, M., Chandran, A., Vial-Aussavy,
A., and Shrivastava, A. Raw nav-merge seismic data to
subsurface properties with mlp based multi-modal infor-
mation unscrambler. Advances in Neural Information
Processing Systems, 34, 2021.

Dettmers, T. 8-bit approximations for parallelism in deep
learning. arXiv preprint arXiv:1511.04561, 2015.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Fei, J., Ho, C.-Y., Sahu, A. N., Canini, M., and Sapio, A.
Efficient sparse collective communication and its applica-
tion to accelerate distributed deep learning. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference, pp.
676–691, 2021.

Google. TensorFlow where(). https://www.
tensorflow.org/api_docs/python/tf/
where, 2022.

Harris, M., Sengupta, S., and Owens, J. D. Parallel prefix
sum (scan) with cuda. GPU gems, 3(39):851–876, 2007.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32:103–112, 2019.

Jiang, Y., Zhu, Y., Lan, C., Yi, B., Cui, Y., and Guo, C. A uni-
fied architecture for accelerating distributed {DNN} train-
ing in heterogeneous gpu/cpu clusters. In 14th {USENIX}
Symposium on Operating Systems Design and Implemen-
tation ({OSDI} 20), pp. 463–479, 2020.

Karimireddy, S. P., Rebjock, Q., Stich, S. U., and Jaggi, M.
Error feedback fixes signsgd and other gradient compres-
sion schemes. 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Li, P., Li, X., and Zhang, C. H. Re-randomized densifica-
tion for one permutation hashing and bin-wise consistent
weighted sampling. Advances in Neural Information Pro-
cessing Systems, 32, 2019.

Li, S. and Hoefler, T. Near-optimal sparse allreduce for dis-
tributed deep learning. arXiv preprint arXiv:2201.07598,
2022.

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li,
T., Paszke, A., Smith, J., Vaughan, B., Damania, P., et al.
Pytorch distributed: experiences on accelerating data par-
allel training. Proceedings of the VLDB Endowment, 13
(12):3005–3018, 2020.

Li, X. and Li, P. Rejection sampling for weighted jaccard
similarity revisited. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 4197–4205,
2021a.

Li, X. and Li, P. C-minhash: Rigorously reducing k permu-
tations to two. arXiv preprint arXiv:2109.03337, 2021b.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally, W. J.
Deep gradient compression: Reducing the communica-
tion bandwidth for distributed training. The International
Conference on Learning Representations (ICLR), 2017.

https://www.tensorflow.org/api_docs/python/tf/where
https://www.tensorflow.org/api_docs/python/tf/where
https://www.tensorflow.org/api_docs/python/tf/where

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Liu, H., Dai, Z., So, D. R., and Le, Q. V. Pay attention to
mlps. arXiv preprint arXiv:2105.08050, 2021.

Luo, L., Nelson, J., Ceze, L., Phanishayee, A., and Krishna-
murthy, A. Parameter hub: a rack-scale parameter server
for distributed deep neural network training. In Proceed-
ings of the ACM Symposium on Cloud Computing, pp.
41–54, 2018.

Meta. PyTorch nonzero(). https://pytorch.org/
docs/stable/generated/torch.nonzero.
html, 2022.

Mitzenmacher, M. and Upfal, E. Probability and computing:
Randomization and probabilistic techniques in algorithms
and data analysis. Cambridge university press, 2017.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sun-
daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.,
Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cher-
niavskii, I., Lu, Y., Krishnamoorthi, R., Yu, A., Kon-
dratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V.,
Jia, B., Xiong, L., and Smelyanskiy, M. Deep learning
recommendation model for personalization and recom-
mendation systems. CoRR, abs/1906.00091, 2019. URL
https://arxiv.org/abs/1906.00091.

Nvidia. Nccl lantecy. https://
developer.nvidia.com/blog/
scaling-deep-learning-training-nccl/,
2018.

NVIDIA. A Timeline of Innovation for NVIDIA. https:
//www.nvidia.com/en-us/about-nvidia/
corporate-timeline/, 2021.

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone,
J. E., and Phillips, J. C. Gpu computing. Proceedings of
the IEEE, 96(5):879–899, 2008.

Patarasuk, P. and Yuan, X. Bandwidth optimal all-reduce al-
gorithms for clusters of workstations. Journal of Parallel
and Distributed Computing, 69(2):117–124, 2009.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Renggli, C., Ashkboos, S., Aghagolzadeh, M., Alistarh,
D., and Hoefler, T. Sparcml: High-performance sparse
communication for machine learning. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15,
2019.

Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor, L.
Imagenet-21k pretraining for the masses, 2021.

Sapio, A., Canini, M., Ho, C.-Y., Nelson, J., Kalnis, P., Kim,
C., Krishnamurthy, A., Moshref, M., Ports, D. R., and
Richtárik, P. Scaling distributed machine learning with in-
network aggregation. arXiv preprint arXiv:1903.06701,
2019.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. 1-bit stochas-
tic gradient descent and its application to data-parallel
distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication
Association, 2014.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20:1–49, 2019.

Shi, S., Wang, Q., Zhao, K., Tang, Z., Wang, Y., Huang, X.,
and Chu, X. A distributed synchronous sgd algorithm
with global top-k sparsification for low bandwidth net-
works. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), pp. 2238–2247.
IEEE, 2019.

Shi, S., Zhou, X., Song, S., Wang, X., Zhu, Z., Huang, X.,
Jiang, X., Zhou, F., Guo, Z., Xie, L., et al. Towards
scalable distributed training of deep learning on public
cloud clusters. Proceedings of Machine Learning and
Systems, 3, 2021.

Shrivastava, A. and Li, P. Densifying one permutation
hashing via rotation for fast near neighbor search. In
International Conference on Machine Learning, pp. 557–
565. PMLR, 2014.

Stich, S. U., Cordonnier, J.-B., and Jaggi, M. Sparsified sgd
with memory. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
pp. 4452–4463, 2018.

Strom, N. Scalable distributed dnn training using commod-
ity gpu cloud computing. In Sixteenth Annual Conference
of the International Speech Communication Association,
2015.

Sun, P., Feng, W., Han, R., Yan, S., and Wen, Y. Optimizing
network performance for distributed dnn training on gpu
clusters: Imagenet/alexnet training in 1.5 minutes. arXiv
preprint arXiv:1902.06855, 2019.

Thakur, R., Rabenseifner, R., and Gropp, W. Optimization
of collective communication operations in MPICH. The
International Journal of High Performance Computing
Applications, 19(1), 2005.

https://pytorch.org/docs/stable/generated/torch.nonzero.html
https://pytorch.org/docs/stable/generated/torch.nonzero.html
https://pytorch.org/docs/stable/generated/torch.nonzero.html
https://arxiv.org/abs/1906.00091
https://developer.nvidia.com/blog/scaling-deep-learning-training-nccl/
https://developer.nvidia.com/blog/scaling-deep-learning-training-nccl/
https://developer.nvidia.com/blog/scaling-deep-learning-training-nccl/
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://www.nvidia.com/en-us/about-nvidia/corporate-timeline/

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, Z., Wu, X., and Ng, T. Mergecomp: A compres-
sion scheduler for scalable communication-efficient dis-
tributed training. arXiv preprint arXiv:2103.15195, 2021.

Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., and
Li, H. Terngrad: Ternary gradients to reduce communica-
tion in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

Xu, H., Ho, C.-Y., Abdelmoniem, A. M., Dutta, A., Bergou,
E. H., Karatsenidis, K., Canini, M., and Kalnis, P. Grace:
A compressed communication framework for distributed
machine learning. In Proc. of 41st IEEE Int. Conf. Dis-
tributed Computing Systems (ICDCS), 2021.

Zhang, Z., Chang, C., Lin, H., Wang, Y., Arora, R., and
Jin, X. Is network the bottleneck of distributed training?
In Proceedings of the Workshop on Network Meets AI
and ML, NetAI ’20, pp. 8–13. Association for Computing
Machinery, 2020. ISBN 9781450380430.

Zheng, L., Jia, C., Sun, M., Wu, Z., Yu, C. H., Haj-Ali,
A., Wang, Y., Yang, J., Zhuo, D., Sen, K., et al. Ansor:
Generating high-performance tensor programs for deep
learning. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20), pp.
863–879, 2020.

Zhou, X., Urata, R., and Liu, H. Beyond 1 tb/s intra-data
center interconnect technology: Im-dd or coherent? Jour-
nal of Lightwave Technology, 38(2):475–484, 2020.

Zinkevich, M., Weimer, M., Smola, A. J., and Li, L. Paral-
lelized stochastic gradient descent. In NIPS, volume 4,
pp. 4. Citeseer, 2010.

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Appendix

A. Theoretical Analaysis
In this section, we perform the theoretical analysis on DRAGONN for gradient sparsification. We start with providing
the settings. Next, we bound the compression error of DRAGONN. Next, we present the generalization error bound for
DRAGONN. Finally, we bound the memory coverage of DRAGONN and provide some case study.

A.1. Settings

Notations: We use Pr[] and E[] for probability and expectation. We use max(S) and min(S) to denote the maximum and
minimum value in the set S ∈ N. For a vector x ∈ Rd, we use ∥x∥2 := (

∑d
i=1 x

2
i)

1/2 to denote its ℓ2 norm.

In this paper, we study the function g(θ;x, y) parameterized by θ ∈ Rd with respect to data-label pair (x, y). Let D denotes
the dataset. In the distributed setting with K nodes, we generate D1, D2, . . . , DK so that each node trains on its own subset
Di ⊂ D. We would like the ℓ2 norm of the gradient of g(θ;x, y) with respect to θ to be bounded as:

Definition A.1 (Bounded gradient norm). Given a loss function g(θ;x, y) with respect to a dataset D, we say the gradient
∇θg(θ;x, y) is G bounded if for any x ∈ D,

∥∇θg(θ;x, y)∥22 ≤ G2,

where G > 0 is the upper bound of the gradient norm.

In our work, we would like to optimize the empirical risk f(θ) = 1
K

∑K
i=1 E(x,y)∼Di

[g(θ;x, y)]. Let fi(θ) =
E(x,y)∼Di

[g(θ;x, y)]. We would like the function fi(θ) to be L-smooth defined as below

Definition A.2 (Smoothness). We say the loss function f : Rd → R is L-smooth if for any a, b ∈ Rd,

f(b) ≤ f(a) + ⟨∇f(a), b− a⟩+ L

2
∥b− a∥22.

Note that these settings are standard in related literature (Bhatia et al., 2016; Barnes et al., 2020).

A.2. Compression Error

In this section, we upper bound the compression error of the hashing-based compressor shown in Figure 2. We start with
defining the compression error.

Definition A.3 (Compression error). For a weight θ ∈ Rd, let ϕ(θ) : Rd → Rd denotes the operation that satisfy θ. We
define the compression error as ∥θ = ϕ(θ)∥22.

The error results from the selection of gradients and the hash collisions in the memory writing of the gradient indices. In this
work, we use the propriety of universal hashing function (Carter & Wegman, 1979) defined as below:

Definition A.4 (Universal hashing (Carter & Wegman, 1979)). Let m ∈ N+. A family of function H is a universal hashing
function if it follows that for any h : N → [m] from family H, for any x, y ∈ N

Pr[h(x) = h(y)] ≤ 1

m
.

Universal hashing is the foundation of most hashing algorithms (Shrivastava & Li, 2014; Li et al., 2019; Li & Li, 2021a;b).
Next, we present several supporting lemmas to upper bound the compression error. We first provide the probability of a
successful memory writing for a gradient.

Lemma A.5. Given a universal hashing function h : N → [m] from family H, for a set of values S = {s1, s2, · · · , sn} ⊂ R,
we show that for i ∈ [n],

E [1(i = max({j ∈ [n]|h(j) = h(i)}))] = (
m− 1

m
)n−i

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Proof. We start with showing that

Pr[i = max({j|h(j) = h(i)})] = Pr[∀j > i, h(j) ̸= h(i)]

= (
m− 1

m
)n−i

Therefore, following the definition of expectation, we have

E [1(i = max({j|h(j) = h(i)}))] = (
m− 1

m
)n−i

Next, we show the upper bound of the approximation errors introduced by hashing.

Lemma A.6. Let m,n ∈ N and n > m. Let S = {s1, s2, · · · , sn} ⊂ R denotes an n-point set of values. Let
τ = max(S)/min(S). we have

n∑
i=1

(
1−

(
m− 1

m

)n−i
)
s2i ≤ (1− γ)

n∑
i=1

s2i

where γ = m
nτ2 (1− (m−1

m)n).

Proof. Let smax = max(S) and smin = min(S). We show that

(1− γ)

n∑
i=1

s2i −
n∑

i=1

(1− (
m− 1

m
)n−i)s2i

=

n∑
i=1

s2i

(
1− γ − 1 +

(
m− 1

m

)n−i
)

=

n∑
i=1

s2i

((
m− 1

m

)n−i

− γ

)

≥ s2min(m(1− (
m− 1

m
)n)− s2maxnγ

≥ s2min(m(1− (
m− 1

m
)n)− τ2nγ) = 0

where the first and second steps are reorganzations, the third step follows by the definition of smax and smin, the forth step
follows from the definition of τ , the last step follows from the definition of γ.

Lemma A.7. Let S = {s1, s2, · · · , sn} ⊂ R denotes an n-point set of values. Let τ = max(S)/min(S). Given an
universal hashing function h : N → [m] from family H, we show that

E

[
n∑

i=1

(1− 1 (i = max({j|h(j) = h(i)})))2 s2i

]

≤ (1− γ)

n∑
i=1

s2i

where γ = m
nτ2 (1− (m−1

m)n).

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Proof.

E

[
n∑

i=1

(1− 1 (i = max{j|h(j) = h(i)}))2 s2i

]

=

n∑
i=1

s2iE
[
(1− 1 (i = max{j|h(j) = h(i)}))2

]
=

n∑
i=1

s2i − 2

n∑
i=1

s2iE [1(i = max{j|h(j) = h(i)})]

+

n∑
i=1

s2iE
[
1(i = max{j|h(j) = h(i)})2

]
=

n∑
i=1

s2i −
n∑

i=1

s2iE [1(i = max{j|h(j) = h(i)})]

=

n∑
i=1

s2i

(
1−

(
m− 1

m

)n−i
)

≤ (1− γ)

n∑
i=1

s2i

where the first and second steps are reorganzations, the third step follows from E
[
1(i = max{j|h(j) = h(i)})2

]
=

E [1(i = max{j|h(j) = h(i)})], the forth step follows from Lemma A.5, the fifth step follows form Lemma A.6.

Finally, we provide the upper bound of the compression error for DRAGONN.

Lemma A.8. For a weight θ ∈ Rd, let ϕ(θ) denotes an sparsification operation (see Definition A.3) that takes top n values
of θ and keep the value that has been successfully hashed it into the memory via universal hashing function, we show that

E∥θ − ϕ(θ)∥ ≤ (1−
m(1− (m−1

m)n)

dτ2
)∥θ∥2

Proof. Let {θ1, · · · , θn} denotes the top n values. Let {θn+1, · · · , θd} the rest of the values. We show that

E∥θ − ϕ(θ)∥ ≤ (1−
m(1− (m−1

m)nτ
2

)

n
)

n∑
j=1

θ2j +

d∑
j=n+1

θ2j

≤
d∑

j=1

θ2j −
m(1− (m−1

m)n)

nτ2
n

d

n∑
j=1

θ2j

= (1−
m(1− (m−1

m)n)

dτ2
)∥θ∥2

where the first step follows from Lemma A.7, the second step follows from θi ≥ θj if i ≤ n and j > n. the last step is an
reorganization.

A.2.1. GENERALIZATION ERROR

In this section, we showcase the upper bound of the generalization error if we follow the setting in (Basu et al., 2019; Barnes
et al., 2020). The upper bound is shown in Theorem A.9.

Theorem A.9. Let f(θ) = 1
k

∑k
i=1 E(x,y)∼Di

[g(θ;x, y)] denotes a L-smooth (Definition A.2) empirical risk function with
∇θg(θ;x, y) being G bounded (Definition A.1). Let the learning rate to be η = 1

2L . Starting from a weight θ0, after T step

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

Algorithm 3 Existing approximate TopK GS
Input: gradient G, tensor size d, threshold t
Output: Gc, I
mask ← |G| > t
d← len(mask)
I ← ∅
s← 0
sprev ← 0
for i = 0 to d− 1 do

s← s+mask[i]
if s > sprev then

I ← I ∪ i
sprev ← s

end if
end for
Gc = G[I]

we would obtain a θT through stochastic gradient descent with DRAGONN compressor (Algorithm 1) such that

E[∥∇f(θT)∥22] ≤
8LE[f(θ0)− f∗]

T
+

2G2

Kd
+ (

8

ϵ2
− 6)G2

where ϵ =
m(1−(m−1

m)n)

dτ2 .

The proof of the theorem is done by applying the compression error ϵ = m(1−(m−1
m)n)

dτ2 in Lemma A.8 in to the setting of
(Basu et al., 2019).

A.2.2. MEMORY COVERAGE

In this section, we discuss the memory coverage of DRAGONN. Due to the collision of the universal hashing function.
The exists empty memory locations if we write n gradient values into m locations. We relate this problem as a Balls-
and-Bins (Mitzenmacher & Upfal, 2017) problem: given n balls, we want to toss them into m bins via universal hashing.
We start with indexing the balls with {1, · · · , n} and then hash the index for each ball via a universal hashing function
h : N → [m]. Therefore, the probability of one bin being empty (1− 1

m)n. Moreover, let X be the number of empty bins.
Let x be the ratio of empty bins in this m bins, for any 0 < ϵ < 1, we have.

Lemma A.10 (Bound on the ratio of empty bins (Mitzenmacher & Upfal, 2017)). Let x be the ratio of empty bins in m bins.
Let p = (1− 1

m)n. We bound the coverage x as,

P (|x− p| ≥ ϵ) ≤ 2e
e−mϵ2/3p

√
m

We provide several examples to illustrate this bound. If we set m = 1024, n = 1024 and ϵ = 0.1, with probability at
least 0.95, we have 0.36 ≤ x ≤ 0.38. If we set m = 512, n = 1024 and ϵ = 0.1, with probability at least 0.8 we have
0.13 ≤ x ≤ 0.14.

B. Baseline Algorithm
We present existing approximate TopK GS in Algorithm 3.

C. Parallel Prefix Sum
This section describes the definition of prefix sum and the parallel prefix sum algorithm with CUDA (Harris et al., 2007).
Following (Blelloch, 1990), we define the prefix-sum operation as:

Definition C.1. The prefix-sum operation performs as follow: given a binary associative operator ⊕, for an n entries array

[a0, a1, . . . , an−1],

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] ∑i

1
=0

x[i] x[2] x[4] x[6]∑
3
i=2 x[i] ∑

5
i=4 x[i] ∑

7
i=6 x[i]

x[0] ∑i

1
=0

x[i] x[2] x[4] x[6]∑
3
i=0 x[i] ∑

5
i=4 x[i] ∑

7
i=4 x[i]

x[0] x[4] x[6]∑
1

i=0 x[i] ∑
5
i=4 x[i] ∑

7
i=0 x[i]

Level 3

Level 2

Level 1

Level 0 ∑
3
i=0 x[i]

(a) The up-sweep phase

x[0]

x[0] x[2] x[4] x[6]∑
1
i=0 x[i] ∑

3
i=0 x[i] ∑

5
i=0 x[i]

x[0] ∑
1
i=0 x[i] x[2] x[4] x[6]∑

5
i=4 x[i] ∑

3
i=0 x[i]

x[0] ∑i

1
=0

x[i] x[2] x[4] x[6]∑
3
i=0 x[i] ∑

5
i=4 x[i] 0

Level 3

Level 2

Level 1

Level 0

x[0] ∑i

1
=0

x[i] x[2] x[4] x[6]∑
3
i=0 x[i] ∑

5
i=4 x[i] ∑

7
i=0 x[i]

Zero

0

0

0 ∑
1
i=0 x[i] ∑

2
i=0 x[i] ∑

3
i=0 x[i] ∑

4
i=0 x[i] ∑

5
i=0 x[i] ∑

6
i=0 x[i]

(b) The down-sweep phase

Figure 9. An illustration of the up-sweep and down-sweep phases of parallel prefix sum algorithm.

Algorithm 4 The up-sweep phase
Input: array x, number of elements d
for i = 0 to log2 d− 1 do

for r = 0 to d− 1 by 2i+1 in parallel do
x[r + 2i+1 − 1]← x[r + 2i − 1] + x[r + 2i+1 − 1]

end for
end for

Algorithm 5 The down-sweep phase
Input: array x, number of elements d
x[d− 1]← 0
for i = log2 d to 0 by −1 do

for r = 0 to d− 1 by 2i+1 in parallel do
x[r + 2i+1 − 1]← x[r + 2i − 1] + x[r + 2i+1 − 1]

end for
end for

we return the array

[a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . . an−1)].

We consider ⊕ as addition in this paper.

Given an input, parallel prefix sum conceptually constructs a balanced binary tree. It sweeps the data to and from the root of
tree to compute the prefix sum. Suppose a binary tree has d leaves, it has log d levels and the number of nodes in each level
i ∈ [0, log d) is 2i. Parallel prefix sum has two phases: up-sweep phase and down-sweep phase. In the up-sweep phase,
as shown in Figure 9(a), the algorithm traverses the tree from leaves to root to calculate partial sums at internal nodes. In
the down-sweep phase, as shown in Figure 9(b), it traverse back up the tree from the root. The partial sums calculated in
the up-sweep phase are used to build the scan in place on the array. The algorithms of the two phases are illustrated in
Algorithm 4 and Algorithm 5

After the prefix-sum operation for the mask, DGC needs to compare each element with its neighbor on its left-hand side to
extract the indices. If it is greater than its neighbor, DGC writes the index of this element into the position with the offset of
its value.

DGC needs d comparison operations to get the mask, (d− 1) add operations for up-sweep phase, (d− 1) add operations and
(d− 1) swap operations for down-sweep phase, and d comparison operations after prefix-sum operation. In total, DGC uses
2d comparison operations, 2(d− 1) add operations, and (d− 1) swap operations to extract the indices of top-k gradients.

DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks

D. Experiments over BERT.
We fine-tune BERT-base for the question-answering task. The dataset is SQuAD1.1, the batch size is 1024 tokens, and the
compression ratio is 0.1%.

4 8 16
The number of GPUs

0

2

4

6

To
ke

ns
/s

ec

1e4
FULL
DGC
DRAGONN
TopK
Linear-Scaling

(a) Training speed

0.0 0.5 1.0 1.5 2.0 2.5
Time cost (s)

+Decoding

+Selection

DRAGONN

DGC

FULL
Compute. Sync.

(b) Impacts breakdown
Figure 10. Experiments on BERT-base.

Figure 10(a) shows the training speed with different numbers of GPUs via different compressors. With 16 GPUs, DRAGONN
performs 1.34x speedup over DGC and 3.5x speedup over full synchronization. Moreover, Figure 10(b) breaks down the
impacts of the three techniques proposed in DRAGONN.

