

Hi-Speed DNN Training with Espresso: Unleashing the Full Potential of Gradient Compression

Zhuang Wang, *Haibin Lin, *Yibo Zhu and T. S. Eugene Ng

* ByteDance

Distributed deep learning

Scale out training with multiple GPUs

Training dataset partitions

Distributed deep learning

Gradient synchronization among GPUs

Training dataset partitions

[1] Gradient Compression Supercharged High-Performance Data Parallel DNN Training, SOSP '21

Communication overhead can account for more than 50% of training time ^[1]

Gradient compression (GC)

- GC shrinks communicated traffic volume
 - has negligible impact on model accuracy ^[1]
- Quantization

[1] GRACE: A compressed communication framework for distributed machine learning, ICDCS '21 [2] DRAGONN: Distributed Randomized Approximate Gradients of Neural Networks, ICML '22

Sparsification

- A subset of gradients
- Save > 99% traffic volume^[2]

S

• However, GC algorithms are designed from an algorithmic perspective

Gradient compression (GC) in reality **Use GPU for compression**

GC incurs computation overhead in practice

GPU compression time

Gradient compression (GC) in reality **Use CPU for compression**

GC incurs computation overhead in practice

Gradient compression (GC) with Espresso

Get the best of three worlds

GPU compression time

CPU compression time

time time

How to choose communication schemes?

Which communication operation to use?

• These decisions have critical impacts on training throughput

How to find the optimal compression strategy? Maximize the training throughput

Challenges

#1: How to describe the search space of compression strategies?

#2: How to evaluate the performance of a compression strategy?

#3: How to quickly determine a good compression strategy?

Challenge #1 **Describe the search space of compression strategies**

Many dimensions of decisions for each tensor

Challenge #1 (cont'd) The decision order matters

Some decisions have strict logical dependencies

Hierarchical communication

Flat communication

Some decision orders lead to bad choices

Which comm op to encode?

Which comm op to decode?

Miss many possibilities

Solution A decision order to maximize the number of possibilities

- Four steps
 - Step 1: determine the number of communication operations Step 2: determine which operations for encoding and decoding Step 3: determine what specific communication operations to use Step 4: determine GPU or CPU for compression

Compress? is implies by which comm op to encode?

Consider all possibilities

A decision tree describe all possible compression options of each tensor

The compression options of all tensors form a compression strategy

All decision trees together describe the search space of strategies

Challenge #2 **Evaluate the performance of a compression strategy**

- Compare different compression strategies
 - Expensive to run end-to-end training with compression strategies
- Our solution
 - Use measurements from real testbed to model training process lacksquare

Tensor computation time

- Derive the timeline of training with any strategy
- More details in the paper

Tensor compression time

Tensor communication time

Challenge #3 **Quickly determine a good compression strategy**

• Extremely large search space

Thousands of compression options for each tensor

Different training jobs have different optimal strategies

Different training models

Different GC algorithms

- How to avoid searching the whole search space?
 - Minimize the computational time to determine a good strategy

Hundreds of tensors in a DNN training model

Different hardware settings

Solution **Compression with GPUs or CPUs?**

Compressing with GPUs and CPUs have different properties

Compress tensors with GPUs

- Fast compression
- Delay computation
- A two-step decision algorithm
 - Step 1: compress tensors with GPU only

Compress tensors with CPUs

- Slow compression
- Delay communication

Step 2: offload GPU compression to CPUs to minimize compression overheads

Solution (cont'd) **Rule out sub-optimal strategies**

Solution (cont'd) **Rule out sub-optimal strategies**

GPU compression time

CPU compression time

Offloading tensors earlier is better than later due to more overlapping time

An algorithm that provably finds the best CPU offloading quickly

Espresso

• System implementation

Results **25Gbps network, PCIe**

• Each machine has 8 V100 GPUs

Up to 77% improvement

More evaluations in the paper

Summary

- Fundamentally analyze the challenges of applying GC
- A tree abstraction to express the search space of compression strategies
 - Expressiveness
 - Extensibility ullet
- A two-step decision algorithm to determine compression strategies Select a near-optimal strategy in milliseconds ullet

- Thank you!
- (Zhuang Wang: zhuang.wang@rice.edu)
 - https://github.com/zhuangwang93/Espresso

