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Large models
Characteristics

• Recent large language models (LLMs)
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Larger training 
models

More GPUs 
involved
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time



Failures are frequent

• Software failures • Hardware failures

[1] Opt: Open pre-trained transformer language models, arXiv ’22

• OPT-175B: 100+ failures[1] in two months

Link failures

Switch failures

Library failures

Remote storage failures

GPU failures
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Checkpoint for failure recovery

• How checkpoint works?

Time

Periodically checkpoint 
the model states

Resume from the latest 
checkpoint Redo the computation

4Remote storage

Checkpoint



Checkpoint for failure recovery

• How checkpoint works?

Time

Failure

Periodically checkpoint 
the model states

Resume from the latest 
checkpoint Redo the computation
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Checkpoint

Desire higher checkpoint frequency

Wasted time



Checkpoint in LLM
Limited checkpoint frequency

• Checkpoint to remote storage takes a long time

• Checkpoint frequency is limited by the checkpoint time
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Checkpoint in LLM
Prohibitive failure recovery overhead

• Costly wasted time 

• Even with the highest checkpoint frequency
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• Significant GPU resources are wasted due to failure recovery

• Thousands of GPUs involved

• Hundreds of failures during training



Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

CPU memory size is sufficient to store checkpoints

8



Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

• Checkpoint to CPU memory enables a much higher frequency
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Remote storage

Checkpoint to remote storage

GPU Machine CPU memory Checkpoint

Checkpoint to CPU memory

High BandwidthLow Bandwidth



Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

• Checkpoint to CPU memory enables a much higher frequency

• CPU memory only stores checkpoints for failure recovery

Decouple the checkpoints for different purposes
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• Need checkpoint history
• Low-frequent checkpoints

• High-frequent checkpoints
• Only need the latest one

Failure recovery Debugging, accuracy evaluation

CPU memory Remote storage



Gemini
Architecture

• Two modules
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Gemini
Architecture

• Two modules
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Challenge #1

• Data stored in CPU memory can get lost
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Challenge #1

• Data stored in CPU memory can get lost
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• Checkpoint redundancy

• Design choice: checkpoint replicas
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Machine 3
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Challenge #1

• Data stored in CPU memory can get lost
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1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• Why not Erasure Coding?

• Prohibitive computation cost

• CPU memory is not a bottleneck

• Checkpoint redundancy

• Design choice: checkpoint replicas



Challenge #1
Optimal checkpoint placement

• Data stored in CPU memory can get lost
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• Solution: checkpoint redundancy

• Design choice: checkpoint replicas
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Machine 1 1
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Machine 3
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GPU

Machine

Local checkpoint

Remote checkpoint

Maximize the probability of failure recovery from checkpoints 
stored in CPU memory



Solution
Group placement strategy

• Two steps
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1. Given m replicas, all machines are divided into 
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for 
all machines within the same group 



Solution
Group placement strategy

• Two steps

18

GPU

Machine

Local checkpoint

Remote checkpoint
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2. Each machine backups a checkpoint replica for 
all machines within the same group 

• An example with two replicas
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Solution
Group placement strategy

• Two steps
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1. Given m replicas, all machines are divided into 
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for 
all machines within the same group 

Group placement strategy is provably optimal



Solution
Group placement strategy

• Two steps
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1. Given m replicas, all machines are divided into 
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for 
all machines within the same group 

Group placement strategy is provably optimal

m: # of checkpoint replicas

k: # of failures machines

93%

80%

Two checkpoint replicas can already handle 
most failure cases!



Challenge #2

• Checkpoint traffic interferes with training traffic
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GPU Machine

Remote storage

Checkpoint Training traffic

Checkpoint to remote storage

Checkpoint traffic and training traffic  
have different networks



Challenge #2

• Checkpoint traffic interferes with training traffic
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Remote storage

Checkpoint to CPU memory

Checkpoint traffic and training traffic  
shares the same network

GPU Machine Checkpoint Training traffic

It can harm training throughput



Solution
Traffic interleaving

• Observation: Idle timespans in the network
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Solution
Traffic interleaving

• Insert checkpoint traffic in idle timespans

24

Computation

Communication

Time(a) Baseline

Training traffic

Computation

Communication

Time(c) Interleaving

Checkpoint

Checkpoint traffic

No overhead 
compared to Baseline



Out-of-memory issue
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Time(a) Baseline

Training traffic• GPU memory is mainly used for training 

• Limited spare GPU memory for checkpoint traffic
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(b) Out of memory

X

X
How to minimize the extra GPU 

memory consumption?



Our design
Checkpoint partition and pipelining

• Keys ideas

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple sub-buffers
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Our design
Checkpoint partition and pipelining

• Keys ideas

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple sub-buffers

• Pipeline checkpoint communications
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Our design
Checkpoint partition and pipelining

• Keys ideas

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple sub-buffers

• Pipeline checkpoint communications
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The GPU sub-buffers are reused

1 2 1 2 1 2 1 2A small GPU buffer, e.g., 128MB, is sufficient



• Checkpoints are available at local

Resume training from failures
Software failures
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• Checkpoints are still available at other machines

Resume training from failures
Hardware failures
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Evaluation

• Settings

• Framework: DeepSpeed, ZeRO-3

• 16 p4d instances (128 A100 GPUs), 400Gbps network bandwidth

• The aggregated bandwidth of remote storage: 20Gbps

• The size of LLM: 100 billion parameters

• Reserved GPU buffer size: 128MB
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Checkpoint frequency

• Baselines

• Strawman: every 3 hours (BLOOM’s frequency [1])

• HighFreq: saturate the remote storage bandwidth capacity

8X170X

Gemini: Checkpoint model states every iteration
[1] Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100



Training efficiency

• Training time

• Gemini checkpoints model states to CPU memory every iteration

Negligible overhead on iteration time Idle timespans can accommodate 
checkpoint traffic 
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Summary

• Large model training suffers from frequent failures

• Gemini checkpoints model states to CPU memory for failure recovery

• Optimal checkpoint frequency, i.e., every iteration

• Negligible overhead on training throughput

• Applicable to different parallelism strategies of training
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