
Zhuang Wang, Zhen Jia, Shui Zheng, Zhen Zhang, Xinwei Fu,
T. S. Eugene Ng, Yida Wang

Gemini: Fast Failure Recovery in Distributed
Training with In-Memory Checkpoints

1

Large models
Characteristics

• Recent large language models (LLMs)

2

Larger training
models

More GPUs
involved

Longer training
time

Failures are frequent

• Software failures • Hardware failures

[1] Opt: Open pre-trained transformer language models, arXiv ’22

• OPT-175B: 100+ failures[1] in two months

Link failures

Switch failures

Library failures

Remote storage failures

GPU failures

3

Checkpoint for failure recovery

• How checkpoint works?

Time

Periodically checkpoint
the model states

Resume from the latest
checkpoint Redo the computation

4Remote storage

Checkpoint

Checkpoint for failure recovery

• How checkpoint works?

Time

Failure

Periodically checkpoint
the model states

Resume from the latest
checkpoint Redo the computation

5

X
Checkpoint

Desire higher checkpoint frequency

Wasted time

Checkpoint in LLM
Limited checkpoint frequency

• Checkpoint to remote storage takes a long time

• Checkpoint frequency is limited by the checkpoint time

6
Time

Iteration
Checkpoint

Retrieval

Wasted time

310
Failure

200100

ckpt 1

200

ckpt 2

300

ckpt 3 ckpt 2

Checkpoint in LLM
Prohibitive failure recovery overhead

• Costly wasted time

• Even with the highest checkpoint frequency

7

• Significant GPU resources are wasted due to failure recovery

• Thousands of GPUs involved

• Hundreds of failures during training

Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

CPU memory size is sufficient to store checkpoints

8

Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

• Checkpoint to CPU memory enables a much higher frequency

9

Remote storage

Checkpoint to remote storage

GPU Machine CPU memory Checkpoint

Checkpoint to CPU memory

High BandwidthLow Bandwidth

Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

• Checkpoint to CPU memory enables a much higher frequency

• CPU memory only stores checkpoints for failure recovery

Decouple the checkpoints for different purposes

10

• Need checkpoint history
• Low-frequent checkpoints

• High-frequent checkpoints
• Only need the latest one

Failure recovery Debugging, accuracy evaluation

CPU memory Remote storage

Gemini
Architecture

• Two modules

11

Machine Checkpoint

Worker
agent

Worker
agent

Worker
agent

Checkpoint
creation module

Remote
storage

GPU

Gemini
Architecture

• Two modules

12

GPU Machine

Distributed
key-value store

Cloud
operator

Checkpoint

Remote
storage

Worker
agent

Worker
agent

Worker
agent

Root
agent

Checkpoint
creation module

Health status Machine replacement

Failure recovery
module

Challenge #1

• Data stored in CPU memory can get lost

13

Challenge #1

• Data stored in CPU memory can get lost

14

• Checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

1

Machine 1 1

Machine 2

Machine 3
1

X

In case of failures

GPU

Machine

Local checkpoint

Remote checkpoint

Challenge #1

• Data stored in CPU memory can get lost

15

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• Why not Erasure Coding?

• Prohibitive computation cost

• CPU memory is not a bottleneck

• Checkpoint redundancy

• Design choice: checkpoint replicas

Challenge #1
Optimal checkpoint placement

• Data stored in CPU memory can get lost

16

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

Maximize the probability of failure recovery from checkpoints
stored in CPU memory

Solution
Group placement strategy

• Two steps

17

1. Given m replicas, all machines are divided into
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for
all machines within the same group

Solution
Group placement strategy

• Two steps

18

GPU

Machine

Local checkpoint

Remote checkpoint

1. Given m replicas, all machines are divided into
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for
all machines within the same group

• An example with two replicas

Machine 1

Machine 2

Machine 3

Machine 4

Group 1 Group 2

Machine 5

Machine 6

1
2

2
1

3
4

4
3

5
6

6
5

Group 3

Solution
Group placement strategy

• Two steps

19

1. Given m replicas, all machines are divided into
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for
all machines within the same group

Group placement strategy is provably optimal

Solution
Group placement strategy

• Two steps

20

1. Given m replicas, all machines are divided into
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for
all machines within the same group

Group placement strategy is provably optimal

m: # of checkpoint replicas

k: # of failures machines

93%

80%

Two checkpoint replicas can already handle
most failure cases!

Challenge #2

• Checkpoint traffic interferes with training traffic

21

GPU Machine

Remote storage

Checkpoint Training traffic

Checkpoint to remote storage

Checkpoint traffic and training traffic
have different networks

Challenge #2

• Checkpoint traffic interferes with training traffic

22

Remote storage

Checkpoint to CPU memory

Checkpoint traffic and training traffic
shares the same network

GPU Machine Checkpoint Training traffic

It can harm training throughput

Solution
Traffic interleaving

• Observation: Idle timespans in the network

23

Computation

Communication

Time(a) Baseline

Training traffic

Idle timespans

Solution
Traffic interleaving

• Insert checkpoint traffic in idle timespans

24

Computation

Communication

Time(a) Baseline

Training traffic

Computation

Communication

Time(c) Interleaving

Checkpoint

Checkpoint traffic

No overhead
compared to Baseline

Out-of-memory issue

25

Time(a) Baseline

Training traffic• GPU memory is mainly used for training

• Limited spare GPU memory for checkpoint traffic

GPU

GPU

CPU

Time

Sender

Receiver

(b) Out of memory

X

X
How to minimize the extra GPU

memory consumption?

Our design
Checkpoint partition and pipelining

• Keys ideas

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple sub-buffers

26

Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

Our design
Checkpoint partition and pipelining

• Keys ideas

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple sub-buffers

• Pipeline checkpoint communications

27

Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

Our design
Checkpoint partition and pipelining

• Keys ideas

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple sub-buffers

• Pipeline checkpoint communications

28

Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

The GPU sub-buffers are reused

1 2 1 2 1 2 1 2A small GPU buffer, e.g., 128MB, is sufficient

• Checkpoints are available at local

Resume training from failures
Software failures

29

1
Machine 1

Machine 2

2

2
1

Machine 3

Machine 4
3
4

4
3

Local checkpoint

Remote checkpoint

Negligible retrieval time

Just few iterations are lost

• Checkpoints are still available at other machines

Resume training from failures
Hardware failures

30

1
Machine 1

Machine 2

2

2
1

Machine 3

Machine 4
3
4

4
3

X X

Machine 2’

Machine 4’

2

4

Evaluation

• Settings

• Framework: DeepSpeed, ZeRO-3

• 16 p4d instances (128 A100 GPUs), 400Gbps network bandwidth

• The aggregated bandwidth of remote storage: 20Gbps

• The size of LLM: 100 billion parameters

• Reserved GPU buffer size: 128MB

31

Checkpoint frequency

• Baselines

• Strawman: every 3 hours (BLOOM’s frequency [1])

• HighFreq: saturate the remote storage bandwidth capacity

8X170X

Gemini: Checkpoint model states every iteration
[1] Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100

Training efficiency

• Training time

• Gemini checkpoints model states to CPU memory every iteration

Negligible overhead on iteration time Idle timespans can accommodate
checkpoint traffic

33

Summary

• Large model training suffers from frequent failures

• Gemini checkpoints model states to CPU memory for failure recovery

• Optimal checkpoint frequency, i.e., every iteration

• Negligible overhead on training throughput

• Applicable to different parallelism strategies of training

34

