# Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints

**Zhuang Wang,** Zhen Jia, Shui Zheng, Zhen Zhang, Xinwei Fu, T. S. Eugene Ng, Yida Wang





## Large models **Characteristics**

• Recent large language models (LLMs)

| Model      | Parameters | Accelerators | Training time | Developer          | Year |
|------------|------------|--------------|---------------|--------------------|------|
| Turing-NLG | 17.2B      | <br>256 V100 |               | Microsoft          | 2020 |
| GPT-3      | 175B       | —            | —             | OpenAI             | 2020 |
| OPT-175B   | 175B       | 992 A100     | 2 months      | Meta               | 2021 |
| Gopher     | 280B       | 4096 TPU v3  | 1.3 months    | Google             | 2021 |
| MT-NLG     | 530B       | 4480 A100    | 3 months      | Microsoft & NVIDIA | 2022 |
| PaLM       | 540B       | 6144 TPU v4  | 2 months      | Google             | 2022 |
| GPT-4      | 1.76T      | —            | 4-7 months    | OpenAI             | 2023 |
|            |            |              |               |                    |      |

Larger training models

More GPUs involved

Longer training time

# Failures are frequent

## • Software failures



Library failures





• OPT-175B: 100+ failures<sup>[1]</sup> in two months

[1] Opt: Open pre-trained transformer language models, arXiv '22

## • Hardware failures



## **GPU** failures





Switch failures

# **Checkpoint for failure recovery**

How checkpoint works?

Periodically checkpoint the model states



# **Checkpoint for failure recovery**

How checkpoint works? 



## **Checkpoint in LLM** Limited checkpoint frequency

Checkpoint to remote storage takes a long time  $\bullet$ 

| Model       | Parameters | Checkpoint size | Checkpoint time (20Gbps) |
|-------------|------------|-----------------|--------------------------|
| Gopher [56] | 280B       | 3.4 TB          | 23 min                   |
| MT-NLG [62] | 530B       | 6.4 TB          | 43 min                   |
| PaLM [23]   | 540B       | 6.5 TB          | 44 min                   |

Checkpoint frequency is limited by the checkpoint time 



## **Checkpoint in LLM Prohibitive failure recovery overhead**

- Costly wasted time
  - Even with the highest checkpoint frequency

| Model       | Parameters | Checkpoint size | Checkpoint time (20Gbps) | Average wasted time |
|-------------|------------|-----------------|--------------------------|---------------------|
| Gopher [56] | 280B       | 3.4 TB          | 23 min                   | 57 min              |
| MT-NLG [62] | 530B       | 6.4 TB          | 43 min                   | 108 min             |
| PaLM [23]   | 540B       | 6.5 TB          | 44 min                   | 110 min             |
|             |            |                 |                          |                     |

- Significant GPU resources are wasted due to failure recovery
  - Thousands of GPUs involved
  - Hundreds of failures during training

## Gemini **Checkpoint to CPU memory**

• CPU memory is much larger than GPU memory

| Instance type      | Cloud  | GPU    | GPU memory | CPU memory |
|--------------------|--------|--------|------------|------------|
| p3dn.24xlarge [14] | AWS    | 8 V100 | 8 × 32 GB  | 768 GB     |
| p4d.24xlarge [15]  | AWS    | 8 A100 | 8 × 40 GB  | 1152 GB    |
| ND40rs_v2 [10]     | Azure  | 8 V100 | 8 × 32 GB  | 672 GB     |
| ND96asr_v4 [11]    | Azure  | 8 A100 | 8 × 40 GB  | 900 GB     |
| n1-8-v100 [9]      | GCP    | 8 V100 | 8 × 32 GB  | 624 GB     |
| a2-highgpu-8g [9]  | GCP    | 8 A100 | 8 × 40 GB  | 640 GB     |
| DGX A100 [12]      | NVIDIA | 8 A100 | 8 × 80 GB  | 2 TB       |

CPU memory size is sufficient to store checkpoints

## Gemini **Checkpoint to CPU memory**

- CPU memory is much larger than GPU memory
- Checkpoint to CPU memory enables a much higher frequency



Checkpoint to remote storage







Checkpoint to CPU memory



## Gemini **Checkpoint to CPU memory**

- CPU memory is much larger than GPU memory
- Checkpoint to CPU memory enables a much higher frequency
- CPU memory only stores checkpoints for failure recovery

Decouple the checkpoints for different purposes



Failure recovery

- High-frequent checkpoints
- Only need the latest one

Debugging, accuracy evaluation

- Need checkpoint history
- Low-frequent checkpoints

Remote storage

## **Gemini** Architecture

• Two modules



## Gemini Architecture

• Two modules



• Data stored in CPU memory can get lost

- Data stored in CPU memory can get lost
- Checkpoint redundancy
  - Design choice: checkpoint replicas ullet







- Data stored in CPU memory can get lost
- Checkpoint redundancy
  - Design choice: checkpoint replicas  $\bullet$



- Why not Erasure Coding?
  - Prohibitive computation cost
  - CPU memory is not a bottleneck



## Challenge #1 **Optimal checkpoint placement**

- Data stored in CPU memory can get lost
- Solution: checkpoint redundancy

## Maximize the probability of failure recovery from checkpoints stored in CPU memory







• Two steps

- 1. Given m replicas, all machines are divided into disjoint groups and each group has m machines
- 2. Each machine backups a checkpoint replica for all machines within the same group

• Two steps

- 1. Given m replicas, all machines are divided into disjoint groups and each group has m machines
- 2. Each machine backups a checkpoint replica for all machines within the same group

## • An example with two replicas



• Two steps

- 1. Given m replicas, all machines are divided into disjoint groups and each group has m machines
- 2. Each machine backups a checkpoint replica for all machines within the same group

Group placement strategy is provably optimal

• Two steps

- 1. Given m replicas, all machines are divided into disjoint groups and each group has m machines
- 2. Each machine backups a checkpoint replica for all machines within the same group

Group placement strategy is provably optimal



Two checkpoint replicas can already handle most failure cases!

Checkpoint traffic interferes with training traffic  $\bullet$ 

Checkpoint to remote storage



Checkpoint traffic interferes with training traffic 

Checkpoint to CPU memory



## Solution **Traffic interleaving**

• Observation: Idle timespans in the network

Computation

Communication



## Solution **Traffic interleaving**

Insert checkpoint traffic in idle timespans •









# **Out-of-memory issue**

- GPU memory is mainly used for training
- Limited spare GPU memory for checkpoint traffic

## How to minimize the extra GPU memory consumption?













## Our design **Checkpoint partition and pipelining**

- Keys ideas
  - Reserve a GPU buffer at the receiver
  - Partition the buffer to multiple sub-buffers









## Our design **Checkpoint partition and pipelining**

- Keys ideas
  - Reserve a GPU buffer at the receiver
  - Partition the buffer to multiple sub-buffers  $\bullet$
  - Pipeline checkpoint communications lacksquare









## Our design **Checkpoint partition and pipelining**

- Keys ideas
  - Reserve a GPU buffer at the receiver
  - Partition the buffer to multiple sub-buffers  $\bullet$
  - Pipeline checkpoint communications

The GPU sub-buffers are reused

A small GPU buffer, e.g., 128MB, is sufficient









## **Resume training from failures** Software failures

Checkpoints are available at local



Machine 3

Negligible retrieval time

Just few iterations are lost

Local checkpoint

Remote checkpoint



## **Resume training from failures** Hardware failures

Checkpoints are still available at other machines









Machine 2'





# Evaluation

- Settings
  - Framework: DeepSpeed, ZeRO-3
  - 16 p4d instances (128 A100 GPUs), 400Gbps network bandwidth
  - The aggregated bandwidth of remote storage: 20Gbps
  - The size of LLM: 100 billion parameters
  - Reserved GPU buffer size: 128MB

OGbps network bandwidth orage: 20Gbps

# **Checkpoint frequency**

- Baselines
  - Strawman: every 3 hours (BLOOM's frequency <sup>[1]</sup>)
  - HighFreq: saturate the remote storage bandwidth capacity  $\bullet$





# **Training efficiency**

## Training time $\bullet$

Gemini checkpoints model states to CPU memory every iteration 



Negligible overhead on iteration time



# Summary

- Large model training suffers from frequent failures
- Gemini checkpoints model states to CPU memory for failure recovery
  - Optimal checkpoint frequency, i.e., every iteration  $\bullet$
  - Negligible overhead on training throughput
  - Applicable to different parallelism strategies of training