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Abstract

Deep neural networks (DNNs) have achieved unparalleled performance in numer-

ous fields, including computer vision, natural language processing, and recommen-

dation systems. However, the computational complexity of DNNs poses challenges

due to escalating training data and model sizes. As GPU cloud network bandwidth

has not kept up with GPU computational capacity as well as the burgeoning size of

training data and models, scaling DNN training becomes problematic. This thesis

o�ers a comprehensive solution by enhancing communications in the data plane for

model training and in the management plane for fault tolerance. The primary tenet is

that communication bottlenecks in distributed deep learning (DDL) can be alleviated

by utilizing current hardware resources within a training system, complemented by

intelligent tra�c and resource scheduling algorithms.

Zen: Addressing data-plane communication issues when tensors have high sparsity,

Zen introduces a provably optimal communication scheme for sparse tensor synchro-

nization to minimize the communication time in DDL, bridging the existing gap. By

comprehensively analyzing sparse tensor characteristics in mainstream DNN models

and systematically exploring the design space of communication schemes for sparse

tensors for the first time, we reveal the optimal communication scheme and realize it

using a novel hierarchical hashing algorithm, capitalizing on GPU’s parallel comput-

ing capabilities to minimize the operation overheads.

Espresso and Cupcake: For DNN models with minimal sparsity, we introduce

Espresso and Cupcake, systems that harness gradient compression (GC) algorithms

to optimize data-plane communications. Espresso employs a decision tree abstrac-

tion to pinpoint near-optimal compression strategies determining how to apply GC

to each gradient tensor. It also leverages a compression decision algorithm to analyze
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the intricate interactions among tensors and optimally o�oads compression opera-

tions from GPUs to CPUs. Recognizing ine�ciencies in applying GC algorithms

tensor by tensor, Cupcake uses a fusion approach that merges multiple tensors for a

single compression operation and finds the provably optimal fusion strategy to max-

imize their training throughput by reducing the amount of communicated data and

minimizing the compression overhead simultaneously. Espresso has been partially

deployed at ByteDance GPU clusters as a compression module.

Gemini: On the management plane, Gemini substantially reduces recovery over-

head for DDL fault tolerance. Traditional model checkpointing, reliant on remote

persistent storage to regularly store checkpoints, often leads to prolonged recovery

times due to large checkpoint sizes and bandwidth limitations. Gemini utilizes a hi-

erarchical storage system, consisting of local CPU memory, remote CPU memory, and

remote persistent storage, to store checkpoints. It employs an optimized checkpoint

placement strategy to maximize the probability of failure recovery from checkpoints in

CPU memory, ensuring rapid failure recovery. The system also integrates a communi-

cation scheduling algorithm, allowing for minimal interference between checkpointing

and model training. Notably, Gemini has been adopted by Amazon Web Services

(AWS) to bolster fault tolerance in extensive language model training.
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Chapter 1

Introduction

Machine learning algorithms, especially Deep Neural Networks (DNNs), have re-
cently achieved record-breaking performance in a wide range of domains, such as
computer vision [87, 196, 190, 129], speech recognition [65], natural language process-
ing (NLP) [67, 104, 124, 204], and recommendation systems [54, 210]. The current
success of DNNs is collectively brought by three factors: models, data, and hardware.

The evolution of model architectures has catalyzed the integration of deep learn-
ing into various applications. Recurrent Neural Networks (RNNs) [182, 185] have
significantly propelled the accuracy of tasks like speech recognition and video tag-
ging. Convolutional Neural Networks (CNNs) [82, 205] excel in image recognition
and analysis as well as object detection and segmentation. The domain of NLP has
undergone revolutionary shifts with the advent of BERT [67] and Transformer [204].
These breakthroughs have led to the emergence of Large Language Models (LLMs)
with trillions of parameters [58]. Remarkably, these LLMs exhibit capabilities com-
parable to, and sometimes surpassing, human performance in tasks like language
translation, code generation, and medical diagnosis [158].

Underpinning the remarkable achievements of DNNs is the pivotal role of data.
As DNNs become more intricate, the demand for larger training datasets intensifies.
For example, the ImageNet database [64] marked the inception of deep learning in
computer vision. Similarly, the dataset released in Netflix challenge [40] ushered in
a new era of research in recommendation systems. Reinforcement learning’s success
in gaming owes much to vast data from simulated environments and self-play. LLMs,
such as GPT-3 [44], also rely on vast text databases sourced from the internet, en-
compassing books, web content, Wikipedia, articles, and more. The training dataset
for GPT-3 is approximately 570GB in size.
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Figure 1.1 : The thesis overview.

The pursuit of larger training data and model sizes demands substantial computing
resources, posing pressure on hardware. In the wake of the plateauing of Moore’s Law
and Dennard Scaling, hardware specialization has become integral for e�cient DNN
training. GPUs have been emerging as the driving force behind accelerated DNN
training, sparking the deep learning explosion. Notably, GPU architectures have
evolved significantly, with computing power surging by over 100◊ in the past eight
years [1, 7].
Distributed deep learning (DDL) systems. These three pillars—models, data,
and hardware—constitute the foundation of deep learning. Yet, the synthesis of these
elements necessitates distributed deep learning (DDL) systems [156, 25, 50, 134] for
scaling up DNN training e�ciently. Given the magnitude of data and model com-
plexity, single GPU-based DNN training can span months, if not years [142, 57].
DDL systems o�er the potential to accelerate training with data parallelism [111,
94, 187, 25, 112] by leveraging multiple GPUs to concurrently process training data.
Furthermore, due to the sheer number of parameters, large DNN models cannot be ac-
commodated by a single GPU’s limited memory, necessitating model sharding across
multiple GPUs. DDL systems provide sophisticated abstractions for model shard-
ing, embracing diverse parallelism strategies such as tensor model parallelism [189],
pipelining parallelism [142], and ZeRO [166].

A distributed deep learning system typically consists of two components: 1) a
data plane that involves a set of GPU machines for model training, and 2) a man-
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agement plane that involves a storage system storing checkpoints of model states for
fault tolerance, as shown in Figure 1.1. In the data plane, each GPU machine has
one or multiple GPUs. Either the training data or model or both are partitioned
among GPUs according to the applied parallelism strategies. The training tra�c,
i.e., the tra�c for model computation, such as gradient synchronization in data par-
allelism [111, 112] and parameter fetching in ZeRO [166], is communicated among
GPUs. Due to the large number of GPUs participating in a distributed training
workload and its extended training time, especially for large language model (LLM)
training, both software failures [92, 152] and hardware failures [203, 79, 198] can
frequently occur. In the management plane, the GPU machines are required to peri-
odically checkpoint the model states and transmit the checkpoint tra�c to a storage
system [139, 145]. When failures occur, GPU machines retrieve the saved checkpoint
from the storage system for failure recovery, instead of restarting training from the
very beginning.
Communications hinder scaling up distributed deep learning. Both the
training tra�c in the data plane and the checkpoint tra�c in the management plane
can become performance bottlenecks to scaling up DDL.
• In the data plane, there exists an exacerbating tension between computation and
communication. The recent innovations of hardware accelerators [118, 146] and
domain-specific software optimization [51, 238, 55] have dramatically reduced the
computation time of DNN training. For example, the single-GPU iteration time
of ResNet50 has seen a 22◊ decrease in the last seven years [194]. This trend
leads to more frequent gradient synchronization in DDL and puts higher pressure
on the network. However, it is di�cult for GPU cloud network deployments to
match this pace; network bandwidth has grown only by roughly 10◊ in the same
period [183, 241, 128, 150, 146]. The communication time for gradient synchroniza-
tion can account for more than 70% of distributed training [38].
• In the management plane, both storing and retrieving checkpoints can cause a
significant waste of GPU computation resources when failures occur. To achieve
continued performance improvements, DNN models, especially large language models,
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have witnessed a 360◊ increase in the number of parameters over the last three years,
from 1.5 billion in GPT-2 [164] to 540 billion in PaLM [58]. Because checkpoints
are periodically saved for failure recovery, they are practically stored in a remote
persistent storage system. Unfortunately, the network bandwidth connecting the
GPU machines and the remote persistent storage system grows much slower (less
than 10◊) than the checkpoint size increases (more than 300◊). It can take hours to
store each checkpoint, leading to a significant loss of training progress, and to retrieve
checkpoints for failure recovery, during which all GPUs have to remain idle. Training
large models inevitably su�ers from frequent failures due to the number of involved
accelerators (e.g., tens of thousands of GPUs) and the length of training time (in
months), and these failures can dramatically slow down the training progress by up
to 43% [121].

1.1 Thesis Statement

The goal of this thesis is to recognize and tackle communication obstacles in both the
data plane and the management plane of DDL to enhance its scalability.
Thesis Statement. This thesis demonstrates the feasibility of mitigating both data-
and management-plane communication bottlenecks in distributed deep learning by
utilizing current hardware resources within a training system, complemented by in-
telligent tra�c and resource scheduling algorithms.

In particular, this thesis makes contributions to the following aspects of deep
learning systems:

• A scalable system that achieves near-optimal communication time for gradient
synchronization when tensors have high sparsity in distributed deep learning.

• Scalable systems that achieve near-optimal scalability of compression-enabled
distributed deep learning when tensors only have low sparsity.

• A distributed system that provides e�cient and scalable fault tolerance services
with minimized failure recovery overhead to distributed deep learning.
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A near-optimal scalable system for sparse tensor synchronization in DDL
(Zen [218] in Chapter 3). Communication for gradient synchronization is a well-
known performance bottleneck for the scalability of DDL [142, 172, 94, 74, 235]. The
prevalence of sparsity has been widely observed in DNN training, e.g., over 98% of
the gradients in a tensor can be zeros [77]. Transiting only non-zero gradients, known
as sparse tensors, can greatly reduce tra�c volume and communication time for gra-
dient synchronization. However, the performance of existing communication schemes
for sparse tensor synchronization is far from optimal and the optimal scheme is still
missing. To bridge this gap, we first analyze the characteristics of sparse tensors in
popular DNN models to understand the fundamentals of sparsity. We then system-
atically explore the design space of communication schemes for sparse tensors for the
first time and find the provably optimal one that minimizes communication time.
The key challenge lies in achieving balanced communications among GPUs and to
date, no such scheme exists. We realize the optimal scheme with Zen, which includes
a novel hashing algorithm that achieves well-balanced communications among GPUs
without information loss. Zen incurs negligible hash operation overheads by using
parallel computing on GPUs.
Near-optimal scalable systems for compression-enabled DDL (Espresso [214]
in Chapters 4 and Cupcake [216] in Chapter 5). Zen achieves near-optimal
communications for sparse tensor synchronization, and it can noticeably reduce the
communication time when tensors have high sparsity in DDL. When tensors only have
low sparsity, many gradient compression (GC) algorithms are proposed to shrink the
communicated data size by compressing gradient tensors with di�erent techniques,
such as quantization [186, 100, 42] and sparsification [192, 27, 115]. These algorithms
reduce communication time and theoretically increase training throughput. However,
they only achieve moderate performance improvement or even harm the training
throughput in practice because applying GC algorithms to DDL incurs additional
computation overheads. We observe that the training throughput of compression-
enabled DDL is determined by the compression strategy, including whether to com-
press each tensor, the type of compute resources (e.g., CPUs or GPUs) for com-
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pression, the communication schemes for compressed tensor, and so on. We propose
Espresso to unleash the benefits of GC algorithms by finding the near-optimal com-
pression strategy. It first designs a decision tree abstraction to express any com-
pression strategies and develops empirical models to timeline tensor computation,
communication, and compression to enable Espresso to derive the intricate interac-
tions among tensors. It then designs a compression decision algorithm that analyzes
tensor interactions to eliminate and prioritize strategies and optimally o�oads com-
pression from GPUs to CPUs. Espresso has been partially deployed at the ByteDance
GPU cluster as a compression module of BytePS [94]. We also observe that existing
compression-enabled DDL systems apply GC algorithms in a layer-wise fashion, i.e.,
tensor by tensor. Unfortunately, this fashion can cause non-negligible compression
overheads due to the fixed overheads to launch and execute kernels in CUDA [33], re-
gardless of tensor sizes. To further improve the system e�ciency of DDL, we propose
Cupcake, a compression optimizer that applies GC algorithms in a fusion fashion, i.e.,
fuse multiple tensors for one compression operation. Cupcake determines the provably
optimal fusion strategy to maximize training throughput by reducing the amount of
communicated data and minimizing the compression overhead simultaneously.
A distributed system for fast failure recovery in DDL (Gemini [213] in
Chapter 6). Because of the tremendous checkpoint size and the low network band-
width from GPU machines to the remote persistent storage system, DDL training
jobs typically checkpoint their model states every few hours [184, 20]. Therefore, the
wasted time caused by a software or hardware failure can be several hours. Consid-
ering the large number of involved GPUs and the extended training time, significant
GPU resources are wasted to tackle frequent failures in DDL. For example, about
178,000 GPU hours were wasted due to various training failures according to the re-
port from OPT-175B training [233]. To minimize the failure recovery overheads, we
propose Gemini, a distributed system that optimizes both the lost training progress
and the stall time for training recovery by checkpointing model states to the CPU
memory. Because the availability of checkpoints stored in CPU memory cannot be
guaranteed when failures occur, we develop a provably near-optimal checkpoint place-
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ment strategy to maximize the probability of failure recovery from checkpoints in
CPU memory. Furthermore, since the communication tra�c for training and check-
pointing to CPU memory share the same network, checkpoint tra�c might interfere
with training tra�c and harm training throughput. We then propose a communica-
tion scheduling algorithm that pipelines checkpoint tra�c across GPU machines to
minimize, if not eliminate, its interference with model training. Gemini reduces the
wasted time for each failure from several hours to a few minutes by automatically
checkpointing the model states at the optimal frequency and incurs no overhead on
the training throughput of DDL. It is being deployed at Amazon Web Services (AWS)
to provide fault tolerance to large model training involving thousands of GPUs.

1.2 Thesis Contributions

This section summarizes the main contributions of the thesis building on top of the
materials from our past papers about Zen [218], Espresso [214], Cupcake [216], and
Gemini [213].

Chapter 3 introduces Zen, a scalable system that minimizes communication time
in sparse tensor synchronization. We make the following contributions:

• We comprehensively analyze the characteristics of sparse tensors in popular
DNN models to understand the fundamentals of sparsity.

• We systematically explore the design space of schemes for sparse tensor syn-
chronization for the first time.

• We find the provably optimal schemes for sparse tensor synchronization from
the design space.

• We formalize a new problem for how to realize the optimal scheme.

• We propose a novel hierarchical hashing algorithm that approximately realizes
the optimal scheme with theoretical guarantees and leverages parallel computing
on GPUs to minimize overheads of hash operations.
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Chapter 4 introduces Espresso and Chapter 5 introduces Cupcake. The main
contributions of these two chapters are:

• We fundamentally analyze the challenges of e�ciently applying gradient com-
pression algorithms to DDL.

• We advocate leveraging di�erent types of compute resources in training systems
to perform gradient compression simultaneously.

• We design a decision tree abstraction to holistically describe the search space
of compression strategies for any compression-enabled DDL.

• We devise a compression decision algorithm that selects a near-optimal strategy
in seconds.

• We devise an algorithm that can find the provably optimal fusion strategy to
maximize the training throughput of compression-enabled DDT jobs in seconds.

• We build compression-enable systems with Espresso and Cupcake, respectively.
Espresso has been partially deployed at the ByteDance GPU cluster as a com-
pression module of BytePS [94].

Chapter 6 introduces Gemini, a scalable system that provides e�cient fault toler-
ance to large model training. The main contributions are as follows.

• We propose the first system that takes advantage of CPU memory for check-
points to achieve e�cient failure recovery in large model training, regardless of
the underlying parallelism strategy.

• We design a provably optimal checkpoint placement strategy that maximizes
the probability of failure recovery from CPU memory.

• We propose a communication scheduling algorithm that pipelines checkpoint
tra�c across GPU machines to minimize its interference with model training.
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• We implement Gemini atop DeepSpeed [134]. Compared to existing solutions,
Gemini achieves a faster failure recovery by more than 13◊ without incurring
overhead on training throughput. It is being deployed at AWS to provide fault
tolerance to large model training.
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Chapter 2

Background

2.1 Basics of Deep Neural Networks

In the realm of artificial intelligence [181, 222] and machine learning [242, 96, 132],
Deep Neural Networks (DNNs) have emerged as a transformative technology, reshap-
ing the landscape of computer vision [87, 190], natural language processing [67, 164],
speech recognition [76, 230], and numerous other domains [173, 86]. At their core,
DNNs are a class of machine learning models inspired by the structure and functioning
of the human brain [195, 135]. They have the remarkable ability to learn and make
sense of complex patterns and features within data, rendering them a cornerstone of
modern AI applications.

The foundation of DNNs lies in neurons, which are the basic building blocks of
these networks. These neurons mimic the neurons in the human brain and carry out
computations on incoming data. Essentially, a neuron functions as a mathematical
function that accepts one or more inputs, multiplies them by values of parameters,
and then adds them. Subsequently, the result is subjected to a non-linear function to
generate the neuron’s output. In a neural network, neurons are organized into layers:
an input layer, one or more hidden layers, and an output layer, as shown in Figure 2.1.
These layers are interconnected, forming a network that can process information in a
hierarchical manner. DNNs typically comprise numerous hidden layers, often ranging
from dozens to hundreds.

The data is propagated through the network layer by layer in forward propagation,
with each neuron in a layer receiving inputs from the previous layer, computing its
output, and passing it to the next layer. One of the key reasons for the e�ectiveness of
DNNs is their capacity to learn from data. This learning process is achieved through
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Figure 2.1 : The illustration of neural networks. DNNs typically comprise tens of or even

hundreds of hidden layers. The figure is created by [2].

a technique called backpropagation. It calculates the loss function based on the output
of a DNN model via forward propagation and the ground truth. It then uses the loss
value to compute the gradient of each parameter. The gradients computed for each
layer during backpropagation form a gradient tensor. Finally, it uses gradient tensors
to update the parameters in each layer with a certain optimizer, such as SGD [243]
or Adam [103]. Training a DNN model is a process to refine the model parameters
with the above steps iteratively until its convergence.

2.2 Distributed Deep Learning (DDL)

Data parallelism. DNNs demand larger training datasets to achieve higher model
accuracy. However, it can take weeks or even months to finish today’s DNN workloads
with a single GPU [142, 57]. A common strategy to accelerate DNN training is data
parallelism, which uses multiple GPUs to digest the datasets simultaneously [111, 94,
187, 25, 112]. In data parallelism, each GPU has a replica of the DNN model; the
training dataset is divided into multiple partitions and each GPU takes one partition.
Each GPU consumes a mini-batch of training data from its own partition at the
beginning of an iteration. It then independently performs forward propagation and
backpropagation to generate gradient tensors. Since GPUs have di�erent inputs, their
generated gradient tensors will also be di�erent. They need to synchronize gradient
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tensors from all GPUs to ensure model consistency synchronously or asynchronously.
Synchronous data parallelism, where all GPUs communicate the gradient tensors and
wait for the aggregated results prior to the next iteration, is the de facto standard
used by DDL frameworks [94, 112, 187, 25]; asynchronous data parallelism, where
GPUs do not wait for aggregation to complete, can hurt the model accuracy [49]. We
focus on synchronous data parallelism in this thesis because of its wide adoption.
Model parallelism. DNN models have demonstrated remarkable capabilities in
a wide range of tasks with their architectures growing in both depth and complex-
ity. These expansive models often have billions of parameters, e.g., 540 billion in
PaLM [58], but unfortunately, training such models on a single GPU is impractical
due to memory limitations. Model parallelism distributes a model, instead of its
training dataset, across GPUs and it divides the model into partitions, each residing
on a di�erent computational unit. These partitions can be organized in various ways,
depending on the architecture of the model and the applied parallelism strategies. For
example, pipeline parallelism [142, 89] breaks the layers of a DNN model network into
stages, with each stage assigned to a di�erent GPU; tensor model parallelism parti-
tions individual layers of a model over multiple GPUs [144]. Each GPU is responsible
for computing a portion of the model’s forward propagation and backpropagation.
In contrast, Zero Redundancy Optimizer (ZeRO) [166] shards each individual layer
across all GPUs, which perform the same computation (but with di�erent inputs)
by communicating parameters on-demand before computations. In addition, it is
common practice to train large DNN models with a combination of these model par-
allelism strategies [144, 235, 58, 184].

2.3 Data-plane Communications in DDL

The data plane in DDL involves a set of GPUs that need to synchronize their gradient
tensors in each iteration, leading to data-plane communications. Allreduce [157]
and Parameter Server (PS) [111] are two widely adopted gradient synchronization
strategies to support data-plane communications in DDL.
Allreduce. It aggregates the gradients from every GPU in a collective fashion in
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Figure 2.2 : The communication workflow of Allreduce [94].

each iteration before GPUs update their parameters locally. Ring-Allreduce is the
most popular Allreduce algorithm [157] and its example with three GPUs is shown
in Figure 2.2. It is dissected into two communication operations: reduce-scatter and
all-gather. Suppose there are n GPUs involved in DDL and their ranks are indexed
from 0 to n≠1. Figure 2.2a shows that the reduce-scatter operation evenly partitions
a tensor into n parts. It then uses n rings with di�erent starting and ending points
to reduce the n parts, respectively. For the ith part, its starting point is GPU i and
its ending point is GPU (n + i ≠ 1) mod n. It takes n ≠ 1 steps to reduce each part
of the n GPUs and the reduced results of the ith part are in GPU i ≠ 1 after reduce-
scatter. Next, the all-gather operation broadcasts the reduced part to all other n ≠ 1
GPUs using a ring structure that takes another n ≠ 1 steps, as shown in Figure 2.2b.
After that, all GPUs have identical data that have been all-reduced, as shown in
Figure 2.2c.
Parameter Servers (PS). The PS architecture [50, 94, 111] consists of two roles:
workers and servers. It has three steps for the gradient synchronization of a tensor:
1) workers evenly partition the tensor across multiple servers for tra�c load balance
and then Push them to servers, as illustrated in Figure 2.3a; 2) servers aggregate the
gradients across all workers; and 3) workers Pull the aggregated tensor from servers
to update the DNN model, as illustrated in Figuer 2.3b.

Because of the layered structure and a layer-by-layer computation pattern in
DNNs [39], the wait-free back-propagation mechanism (WFBP) [231, 94] is proposed
to overlap communication with computation in data parallelism. A gradient tensor
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Figure 2.4 : Gradient computation and communication timeline in DDL. In (a), the

gradient tensor communications need to wait for the completion of all of their computations.

In (b), the communication of a tensor can begin once its computation finishes.

can begin its synchronization once it is ready during backpropagation, rather than
waiting for the completion of all gradient tensors, as illustrated in Figure 2.4. WFBP
is widely adopted by DDL frameworks [187, 94, 112, 50, 25] because it can significantly
reduce the communication time for gradient synchronization and improve training
throughput. However, there still exists an exacerbating tension between computation
and communication in DDL.
Gradient synchronization communication is the performance bottleneck.
The recent advancements in ML hardware accelerators [146] and specialized software
stacks [51, 238, 179] have significantly improved the single-GPU training speed. For
instance, the single-GPU iteration time of ResNet50 has seen a 22◊ decrease in the
last seven years [194]. Faster training speeds necessitate more frequent gradient syn-
chronization, thereby augmenting the network’s requirements. Nonetheless, network
upgrades have not kept up with the pace of computation-related advancements. The
network bandwidth in GPU clouds has only seen a roughly 10◊ increase in the same
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period [128, 150, 146]. This imbalance between the fast-growing computing capability
and the slower-growing communication bandwidth reduces the chance of overlapping
communication with computation, and results in poor scalability of DDL. According
to recent literature [38], the communication time for gradient synchronization can ac-
count for more than 70% of the total time for training BERT [67] with Allreduce and
more than 60% for training Transformer [204] with PS across 16 AWS EC2 instances,
each with 8 NVIDIA V100 GPUs, in a 100Gbps network. Similar findings have also
been reported in other studies [74, 142, 214].

2.4 Management-plane Communications in DDL

The role of the management plane in DDL is to resume training from failures that
disrupt training jobs. Both saving and retrieving checkpoints result in management-
plane communications and their importance has grown substantially in response to
the advancements in distributed training.
Trends in distributed training. Many large language models (LLMs) [177, 144,
165, 191, 58, 88, 200] have been developed recently to continuously push the state of
the art forward because of their great potential towards artificial general intelligence
(AGI). Table 2.1 lists the statistics of several recent LLMs released in the last three
years. There are three observations for the training of LLMs: 1) The model size keeps
increasing, 30x larger from 2020 to 2022. For example, Turing-NLG [177] released in
2020 has 17.2 billion parameters, but MT-NLG [191] released in 2022 increases the
number of parameters by 30◊ and achieves 530 billion parameters. 2) The number of
accelerators involved in LLM training keeps increasing, from hundreds to thousands.
For example, 256 NVIDIA V100 GPUs are used for the training of Turing-NLG, but
4480 NVIDIA A100 GPUs are used for the training of MT-NLG. These two trends
are still moving forward because continued improvements have been observed from
scaling the model sizes of LLMs [58]. 3) It can take months to finish model training.
Frequent failures in distributed training. Developers have observed many fail-
ures during LLL training due to the large number of GPUs and the long training
time. For example, Meta used 992 NVIDIA A100 GPUs to train OPT-175B. The
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Model Parameters Accelerators Training time Checkpoint size Year

Turing-NLG [177] 17.2B 256 V100 — 206 GB 2020
GPT-3 [44] 175B — — 2.1 TB 2020
OPT-175B [233] 175B 992 A100 2 months 2.1 TB 2021
Gopher [165] 280B 4096 TPU v3 1.3 months 3.4 TB 2021
MT-NLG [191] 530B 4480 A100 3 months 6.4 TB 2022
PaLM [58] 540B 6144 TPU v4 2 months 6.5 TB 2022

Table 2.1 : The statistics of recent large language models. The optimizer is Adam [103].

— indicates no data is found from public resources.

training process encountered around 110 failures over a period of two months and
about 178,000 GPU hours were wasted due to various training failures [233]. Simi-
lar symptoms have also been reported during training BLOOM [5]. Considering the
three trends in distributed training, it is expected that future distributed training
will experience even more frequent failures.
Checkpoints for failure recovery. Frequent failures can result in a significant
waste of computation resources. The model states, i.e., the learnable parameters and
the optimizer states, are maintained in GPU memory during model training. In case
of a failure, the model states learned so far can be lost, leading to a loss of training
progress and wastage of computation resources [139]. One commonly used approach
to handle failures is model checkpointing. It has two phases: 1) during training, the
training system regularly stores training snapshots by dumping model states into a
storage system [71, 139, 5], incurring checkpoint saving communications; and 2) upon
the occurrence of a failure, the training system retrieves the latest checkpoint from the
storage to resume training on GPU machines, causing checkpoint retrieval communi-
cations. Both checkpoint saving and retrieval communications are management-plane
communications in DDL. Furthermore, machine learning practitioners can restart the
training process from a certain checkpoint should the model fail to converge in later
iterations or exit unexpectedly due to failures. The state-of-the-art distributed train-
ing adopts a synchronized method to guarantee model quality [233, 144, 228], making
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it infeasible to only drop the training progress of the failed machines upon a failure
to proceed training without waiting for the failure recovery. Instead, it requires all
machines to roll back to the same checkpoint for failure recovery.
Failure recovery overheads with checkpoints. The overhead associated with
failure recovery in DDL is primarily influenced by the checkpoint frequency and the
duration required to retrieve the checkpoint from the storage. In the event of a failure,
the training process can resume from the most recent checkpoint, but any progress
made during the time period between that checkpoint and the time point of the failure
is lost. A higher checkpoint frequency is desirable because it reduces the duration of
this lost progress. However, the frequency is constrained by the time it takes to save
the model states to the storage system because a new checkpoint cannot commence
until the previous one is completed. Meanwhile, all GPUs must remain idle while the
checkpoint is being retrieved from storage. In other words, the overhead of failure
recovery is determined by the communication time required for the transmission of
checkpoints to storage and their subsequent retrieval from storage.
Checkpoint communication is the performance bottleneck. The burgeoning
number of parameters in DNN models has led to a substantial increase in checkpoint
sizes in distributed training. As listed in Table 2.1, over the past three years, we have
witnessed a remarkable 360-fold expansion in checkpoint sizes, soaring from 206GB
for Turing-NLG [177] to 6.4TB for MT-NLG [58]. These checkpoints are periodically
stored in a remote storage system [71, 184], such as HDFS [43] and S3 [153], and are
both saved and retrieved via the network connecting GPU machines and the remote
storage system. Unfortunately, the growth in bandwidth of this network has lagged far
behind, increasing by less than a factor of 10 during the same period. This disconnect
has significant consequences, notably in significantly prolonging the time required
for checkpoint saving communications and checkpoint retrieval communications and
exacerbating the overhead associated with failure recovery. To put it into perspective,
it takes 42 minutes to checkpoint the model states of MT-NLG to a remote storage
system with a network bandwidth of 20Gbps, and the average recovery overhead
exceeds 1.7 hours for each failure [213]. Considering thousands of GPUs involved in
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training and hundreds of failures experienced during training, the total computation
resource waste is significant, and the training time slowdown can be up to 43% [121].
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Chapter 3

Zen: Near-Optimal Communications for Sparse
and Distributed DNN Training

The ever-growing size of DNN models and training datasets enhances the remarkable
achievements of DNNs but at the cost of substantial computing resources. Completing
DNN workloads on a single GPU can take weeks or even months. Distributed DNN
training with multiple GPUs is commonly used to accelerate the training process.
Nonetheless, communication for gradient synchronization among GPUs poses the
main challenge in system e�ciency [216, 214, 235], as discussed in Section 2.3. In
this chapter, we will introduce a gradient synchronization system called Zen that
optimizes communication time and improves training throughput by fully leveraging
sparsity in gradient tensors.

3.1 Introduction

There exists an exacerbating tension between computation and communication in dis-
tributed deep learning (DDL). Recent hardware developments have greatly improved
the computation e�ciency of DNN training. For instance, the training e�ciency of
BERT [67] has been doubling every year in the past three years [125]. These advance-
ments increase the frequency of gradient synchronization in distributed training and
shift more burdens to the network, but the network upgrades have not kept up with
computation improvements [128, 150, 146].

Recently, practitioners in the deep learning community have observed the preva-
lence of sparsity in DNN training [48, 127, 47, 217, 75, 229]. The gradients computed
for each DNN layer during training form a tensor. Over 98% of the gradients in a ten-
sor can be zeros [77] and these tensors can dominate the size of DNN models. We can
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represent non-zero gradients with a sparse format and denote the tensor with a sparse
format as a sparse tensor. This observation provides a great opportunity to reduce
communication time if sparse tensors are transmitted for gradient synchronization.

Previous works, such as AGsparse [112], SparCML [172], and OmniReduce [74],
have recognized this potential. They use various sparse formats and communication
schemes for sparse tensor synchronization. However, these approaches do not fully
consider the fundamental characteristics of sparsity in DNN models for their designs,
resulting in suboptimal performance of communication time for gradient synchro-
nization. The root cause is that these previous works lack an understanding of the
optimal scheme for sparsity. To advance the state-of-the-art, it is essential to first
revisit the fundamentals of sparsity in DNN models.

In this chapter, we comprehensively analyze the characteristics of sparse tensors.
We profile the sparse tensors from popular DNN models [83, 98, 120, 67] across GPUs
and iterations to gain insights into how they are related to di�erent inputs for training.
Additionally, we investigate the changes in sparse tensors before and after aggregation
with varying numbers of GPUs. We also examine the locations of non-zero gradients
in tensors and inspect their distributions.

We next systematically explore the design space of communication schemes to
synchronize sparse tensors. To construct di�erent schemes, we discuss four elementary
dimensions that consider the communication, aggregation, partition, and balance
aspects of a scheme. All existing schemes [112, 172, 74, 111] can be described by
these four dimensions. We find that there exists an optimal scheme for synchronizing
sparse tensors. However, the challenge lies in achieving balanced communications
among GPUs and to date, no such scheme exists.

We develop a system called Zen that approximately realizes the optimal scheme
within the design space described by the four dimensions. One class of natural ap-
proach is sparsity-aware tensor partitioning, but it is ine�cient due to data depen-
dency. In contrast, Zen eliminates data dependency and achieves high e�ciency by
using hashing algorithms. However, a challenge with hashing algorithms is the signif-
icant information loss of gradients, resulting in reduced model accuracy. To address
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this challenge, we propose a hierarchical hashing algorithm that guarantees balanced
communications without information loss. In addition, it can fully leverage paral-
lel computing on GPUs to minimize the incurred computation overheads for hash
operations.

We summarize our contributions as follows: 1) we conduct a comprehensive anal-
ysis of the characteristics of sparse tensors; 2) we explore the design space for commu-
nication schemes for sparse tensors synchronization, and we find the optimal scheme;
3) we propose Zen that approximately realizes the optimal scheme to achieve near-
optimal communication time; and 4) we evaluate Zen and show that it achieves up to
5.09◊ speedup in communication time and up to 2.48◊ speedup in training through-
put compared to the state-of-the-art methods [74, 172].

3.2 Analysis of Communication Schemes for Sparse Tensor

Synchronization
3.2.1 Gradient Sparsity in DNN Training

The synchronization of gradient tensors from di�erent GPUs is commonly required in
distributed training. For example, in data parallelism [63, 187, 94, 112], the training
dataset is partitioned among all GPUs. Since GPUs have di�erent inputs, their gen-
erated gradient tensors will also be di�erent and they need to synchronize gradient
tensors from all GPUs to ensure model consistency. In tensor model parallelism [189],
individual layers of a DNN model are partitioned over multiple GPUs. These GPUs
synchronize the gradient tensors during backward propagation for the gradient com-
putation of subsequent layers. In addition, it is common practice to train large DNN
models [144, 235, 58, 184, 141] with a mix of data parallelism and other parallelism
strategies, such as pipeline parallelism [142, 89], tensor model parallelism [189], and
ZeRO [166, 236]. These training workloads must synchronize gradient tensors across
GPUs as well.

High sparsity in gradient tensors has been widely observed in DNN training [48,
127, 47, 217]. Because the training of DNN models may focus on updating a subset of
parameters instead of all of them [75, 229, 48], some of the gradient tensors in DNN
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Model Dataset MLP Size Embedding Size Batch Size Density

LSTM [129] One Billion Word 20M 406M 128 1.13%
DeepFM [83] Criteo 68M 214M 1024 2.80%
NMT [120] IWSLT 2014 De-En 31M 112M 64 2.47%
BERT [67] SQuAD v1.1 86M 23M 4 1.06%

Table 3.1 : DNN models and their training statistics. Density is the average density of

embedding gradient tensors on one GPU.

models are naturally sparse, with most of the gradients being zeros. Table 3.1 lists the
statistics of four widely deployed DNN models for both recommendation systems and
language processing. Each model contains two parts: multilayer perceptron (MLP)
and embedding table. There are two major observations from Table 3.1. Firstly,
the embedding tables comprise a large portion of model parameters. Secondly, these
embedding tables show a significant level of sparsity in their gradient tensors. We
define the density of a gradient tensor as the percentage of its non-zero gradient
values and then provide the average density for the sparse gradient tensors in the
four models. As shown in the table, gradient tensors can have only 1.06% non-zero
gradients in DNN training.

If the notable sparsity can be leveraged, it can significantly reduce the tra�c vol-
ume for gradient synchronization and shorten the communication time in distributed
training. Previous works [102, 74, 172] have recognized this potential, but the funda-
mental implications of sparsity are not yet understood.

3.2.2 Characteristics of Sparse Tensors

In this section, we will analyze the characteristics of sparse tensors in DNN models.
The original gradient tensor is in a dense format, in which the gradients of all the
parameters in a DNN layer are stored.

Definition 3.1 (Dense tensor). We define the original gradient tensor in a DNN
layer as a dense tensor.

When there are many parameters having zero gradients, we can also represent
a gradient tensor in a sparse format. A typical realization of the sparse format
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is coordinate lists (COO) that store a list of non-zero gradients and a list of the
corresponding indices [74, 227].

Definition 3.2 (Sparse tensor). We define a gradient tensor in a sparse format as a
sparse tensor.

We assume that the size of a dense tensor G is M and its density is dG. The
network bandwidth is B and the training involves n machines. For simplicity, we
assume each machine has only one GPU in this section.
C1: The overlap of sparse tensors varies. Similar to dense tensors, sparse tensors
need to be aggregated during synchronization. When aggregating dense tensors, the
indices of gradients from di�erent GPUs are identical. However, due to the di�erent
batches as the input for training on di�erent GPUs, the set of indices for non-zero
gradients in a sparse tensor is unknown a priori. They can have overlaps, while how
much they can overlap depends on many factors, such as the DNN model, the training
dataset, and the batches. We define the overlap ratio following [206] to quantify this
overlaps between two sparse tensors.

Definition 3.3 (The overlap ratio). Given two sparse tensors and their sets of indices
for non-zero gradients are I1 and I2, respectively, their overlap ratio is defined as

|I1flI2|
min{|I1|,|I2|} , where | · | is the cardinality of a set.

Figure 3.1a shows the probability density function (PDF) of the overlap ratios for
four DNN models. We can see that the overlap ratio in a model is approximately
normally distributed and it is in a wide range. In addition, di�erent models have
di�erent distributions of overlap ratios.
C2: The tensor size after aggregation varies. When aggregating dense ten-
sors, the tensor sizes before and after aggregation remain the same. However, when
aggregating sparse tensors, the unknown overlaps of sparse tensors lead to varying
tensor sizes after aggregation. Because the aggregation involves sparse tensors from
multiple GPUs, we denote dn

G as the density after the aggregation of tensors from n

GPUs. We observe that sparse tensors get denser after aggregation. Here we define
the densification ratio to quantify this characteristic.
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(a) (b)
Figure 3.1 : The characteristics of sparse tensors in DNN models. (a) shows that the

overlap ratio of sparse tensors varies; (b) shows that tensors have higher density after

aggregation.

Definition 3.4 (The densification ratio). Given a dense tensor G, its densification
ratio is define as “n

G = dn
G

dG
.

Figure 3.1b presents the average densification ratio “n
G with respect to the number

of GPUs for the four DNN models studied in this section. The densification ratio
increases with the number of GPUs, demonstrating that tensors have higher density
after aggregation. We can also see that the densification ratio is smaller than the
number of GPUs, i.e., “n

G < n. It suggests that the indices of non-zero gradients in
sparse tensors from di�erent GPUs are partially overlapped.
C3: The distribution of non-zero gradients is skewed. When evenly split-
ting a dense tensor into multiple partitions, we observe that most of the non-zero
gradients are in one of them. For example, with eight partitions, over 60% of the
non-zero gradients are in the first partition in the four DNN models. Figure 3.2a
shows the percentage heatmap of the non-zero gradients in each partition for tensors
from the embedding table. Here we define the skewness ratio to quantify the skewed
distribution of non-zero gradients.

Definition 3.5 (The skewness ratio). Given a dense tensor G and we evenly split G

into n disjoint partitions, denoted as {G1, · · · , Gn}, then the skew ratio of G with n

partitions is defined as sn
G = maxiœ[n]{dGi

}
dG

.

Figure 3.2b presents the skewness ratios of gradient tensors from the embedding
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(a) The heatmap of non-zero gradients dis-
tribution.

(b) The skewness ratio.

Figure 3.2 : The distribution of non-zero gradients is skewed.

table in the DNN models studied in this section. They are significant in all four
models. For example, when we evenly split the gradient tensor from the embedding
table in LSTM into 128 partitions, the skewness ratio is over 70. It indicates that more
than half of the non-zero gradients are in the same partition. Another observation
is that the skewness ratio consistently increases with the number of partitions. It
suggests that the distribution of non-zero gradients gets "skewer" with more partitions.

3.2.3 Elementary Dimensions for Synchronization

Communication schemes for synchronizations of dense tensors have been extensively
studied [199, 187, 94, 111]. In this section, we will explore the design space to con-
struct communication schemes to synchronize sparse tensors for the first time.

Given a tensor G in each GPU, the outcome of its synchronization is that gra-
dients with the same indices are aggregated and all GPUs have identical aggregated
results. We will discuss four dimensions that construct a communication scheme for
the synchronizations of sparse tensors.
Communication dimension. There are typically three communication patterns
for synchronization: 1) Ring, 2) Hierarchy, and 3) Point-to-point. They are
illustrated in Figure 3.3 with an example in which there are four GPUs and GPU P3

aggregates the data from all GPUs. In Ring, all GPUs form a ring structure. P0 first
sends its data to P1, which then passes the data along with its own data to P2 and so
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(b) Hierarchy.
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(c) Point-to-point.
Figure 3.3 : An illustration of three communication patterns with four GPUs. GPU P3

aggregates the data from all GPUs.

on until P3 receives all the data. In Hierarchy, all GPUs form a hierarchical structure
and P3 is the root. There are two stages in Figure 3.3b. In the first stage, P0 sends
its data to P1 and P2 sends its data to P3. In the second stage, P1 sends the data
from both its own and P0 to P3. In Point-to-point communication, the other three
GPUs directly send data to P3.
Aggregation dimension. A communication pattern can have multiple commu-
nication stages and thus there are two options for aggregation: 1) Incremental

aggregation, i..e, aggregate the tensors at each communication stage; and 2) One-shot

aggregation, i.e., aggregate tensors from all GPUs after the last communication
stage. In the example illustrated in Figure 3.3, Ring has three stages and Hierarchy
has two stages. Although each GPU has one tensor for synchronization, it can host
multiple tensors at each stage. Figure 3.4 displays an example with Hierarchy as the
communication pattern. When P1 receives a tensor from P0, it has two tensors due
to its own tensor. P1 can aggregate the two tensors and send the aggregated result
to P3, as shown in Figure 3.4a; it can also just send the concatenated tensor to P3, as
shown in Figure 3.4b. The two aggregation patterns for Point-to-point are identical
because they only have one stage.
Partition dimension. There are two partition patterns to ensure that all GPUs have
the same aggregated results after synchronization: 1) Centralization, in which each
tensor is communicated and aggregated as a whole; and 2) Parallelism, in which
each tensor is decomposed into multiple partitions and each partition is communicated
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(a) Incremental aggregation.
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(b) One-shot aggregation.

Figure 3.4 : An Illustration of two aggregation patterns with Hierarchy. The gradients

on each GPU are from the same parameter and 4.7 is the final aggregated result.

and aggregated separately. Figure 3.5 compares the two partition patterns with Point-
to-point as the communication pattern. With Centralization, as shown in Figure 3.5a,
each GPU sends its tensor as a whole to other GPUs. With Parallelism, as shown
in Figure 3.5b, each GPU first decomposes its tensor into three partitions and it
requires two steps for synchronization. The first step aggregates the same partition
from di�erent GPUs in di�erent places and the second step ensures that all GPUs
have the aggregated results of all partitions.
Balance dimension. With Parallelism, tensors are partitioned and there are two
patterns in terms of the tra�c volume received at each GPU: 1) Balanced communication,
in which GPUs receive the same amount of data; and 2) Imbalanced communication,
in which the tra�c volumes received at di�erent GPUs are greatly di�erent. Figure 3.6
compares the two balance patterns among three GPUs with Point-to-point. There
are 15 gradients in the tensor and six of them are non-zero. As shown in Figure 3.6a,
four non-zero gradients are in the middle partition and they are sent to GPU 1. The
tra�c volume received at GPU 1 is 4◊ that received at GPU 0 and GPU 2. In
Figure 3.6b, each GPU sends two non-zero gradients to other GPUs and the volume
among them is well-balanced.

The four dimensions can describe the design space of communication schemes to
synchronize sparse tensors. Table 3.2 classifies existing schemes [112, 172, 74, 111]
based on their dimensions and data formats to represent sparse tensors.
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Figure 3.5 : An illustration of the two partition patterns with Point-to-point. In (a), each

tensor is communicated as a whole and each GPU receives all the tensors. In (b), each

tensor is split into three partitions; the same partition from di�erent GPUs is sent to the

same place, and the aggregated results are then sent back to all GPUs.

3.2.4 The Optimal Communication Schemes

In this section, we will next analyze the optimal schemes within the design space
described by the four dimensions in terms of the theoretical communication time to
synchronize sparse tensors.

Theorem 3.1 (Optimal schemes). When choosing a communication scheme to min-
imize communication time:
1. If sparse tensors exhibit little to no overlap, the scheme with Hierarchy, Incremen-

tal aggregation, and Centralization is optimal; but this case is unlikely in reality.
2. If sparse tensors are partially or fully overlapped, the optimal one is the scheme

with Point-to-point, One-shot aggregation, Parallelism, and Balanced communica-
tion; this case is very likely in distributed DNN training.

Proof of Theorem 3.1.1. We prove it with three lemmas. When any two sparse
tensors have no overlaps, the minimum tra�c volume each GPU has to receive is
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(b) Balanced communication

Figure 3.6 : An illustration of the two balance patterns with Point-to-point and Paral-

lelism. The numbers are the indices of non-zero gradients. Each GPU has six non-zero

gradients. In (a), four gradients from each GPU are sent to GPU 1. In (b), each GPU

sends two gradients to other GPUs, and communications among them are well-balanced.

However, it is non-trivial to achieve such balanced communications.

all the tensors from other GPUs. Any communication scheme with Centralization
achieves the optimal communication time. Therefore, we have the following lemma.

Lemma 3.1. When sparse tensors have no overlap, any communication scheme with
Centralization can achieve this minimum with any communication pattern.

When sparse tensors are overlapped, we have the following lemmas.

Lemma 3.2. When sparse tensors overlap, the scheme with Hierarchy, Incremental
aggregation, and Centralization outperforms other schemes with Centralization.

Proof. Let n denote the number of GPUs and I0, I1, . . . , In≠1 are the set of indices for
non-zero gradients in each GPU, respectively. C is the overlap of all the sparse tensors,
i.e., C = u

Ii. If a communication scheme adopts point-to-point communication or
one-shot aggregation, each GPU has to receive C for n ≠ 1 times. Then we consider
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Incremental aggregation and the communication pattern is Ring or Hierarchy. With
Ring, the tensor from each GPU is aggregated at each stage and then forwarded
to the next GPU. Consequently, this tensor is received by every GPU. Because C

is the common overlap, each GPU also has to receive C for n ≠ 1 times. When the
communication pattern is Hierarchy, each GPU receives data from all the other GPUs
with its own hierarchical structure that has log n + 1 levels, as shown in Figure 3.3b.
Because the root GPU is in each level, it has to receive C for log n times. It suggests
that the tra�c volume in the scheme with Hierarchy, Incremental aggregation, and
Centralization is less than that in other schemes with Centralization. Let C Õ denote
the overlap of a subset of the sparse tensors, we can have a similar conclusion that a
subset of GPUs has to receive C Õ multiple times. In other words, each GPU still has
to receive the overlaps multiple times.

Lemma 3.2 implies if we fix the choice for partition pattern to Centralization, the
scheme with Hierarchy, Incremental aggregation, and Centralization is the best.

Lemma 3.3. When sparse tensors exhibit little to no overlap, the scheme with Hier-
archy, Incremental aggregation, and Centralization outperforms schemes with Paral-
lelism.

Proof. For schemes with Parallelism, the aggregation operation in their first step aims
to reduce the tra�c volume in the second step when sparse tensors overlap. But when
sparse tensors exhibit little to no overlap, or minimal overlap at best, the first step has
no benefits and the communication time in the second step equals the communication
time of schemes with Centralization. It implies that schemes with Parallelism have
longer communication time than schemes with Centralization.

Lemmas 3.1-3.3 imply Theorem 3.1.1.
Proof of Theorem 3.1.2. Unless otherwise specified, we assume the sparse for-
mat is COO. Communication schemes with Parallelism can su�er from imbalanced
communications due to the skewed distribution of non-zero gradients. Given a dense
tensor G, a straightforward parallel communication scheme first evenly splits it into
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multiple chunks and then extracts the non-zero gradients from each chunk. As dis-
cussed in Section 3.2.2, the distribution of non-zero gradients in a gradient tensor
is skewed. One chunk can have much more non-zero gradients than other chunks.
Consequently, one GPU has to receive most of the non-zero gradients from all the
GPUs in the first step, leading to imbalanced communications among GPUs. After
aggregation, the number of non-zero gradients in one GPU can be still much more
than that in other GPUs. Therefore, communications in the second step are also
imbalanced. It is important to note that an alternative to first extracting non-zero
gradients from the gradient tensor and then evenly splitting the sparse tensor into
multiple partitions is not a viable option. This is because the gradients for the same
parameter from di�erent GPUs can be sent to di�erent places, causing incomplete
aggregations.

Lemma 3.4. The scheme that adopts Point-to-point, One-shot aggregation, Paral-
lelism, and Balanced communication outperforms other schemes with Parallelism.

Proof. There are three communication patterns: Ring, Hierarchy, and Point-to-point.
We first consider communication schemes with Point-to-point and Parallelism, namely,
the PS architecture. Given a gradient tensor G with the density of dG and there are
n servers, we first analyze the communication time of push and pull operations sep-
arately. We then discuss the communication time of di�erent PS schemes.

• Push. Because the skewness ratio is sn
G, the largest density in the n partitions

is sn
GdG. The size of the sparse tensor extracted from this partition is 2sn

GdGM/n. As
a result, the communication time of push in sparse PS is 2(n ≠ 1)sn

GdGM/n/B.
• Pull. After aggregation, the largest density in the n partitions becomes sn

Gdn
G.

In existing implementations of the PS architecture, the communication time of Pull
is 2(n ≠ 1)sn

Gdn
GM/n/B because each server needs to broadcast its aggregated results

to all the workers with point-to-point communications [94, 111]. In theory, there
are other ways to implement Pull in the PS architecture. For example, each server
can perform a broadcast collective operation. The performance of broadcast with
di�erent algorithms is analyzed in [36] and its communication time for Pull can be
expressed as 2bdn

GM/B, where b is the number of rounds in an algorithm. For example,
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b = Álog nË when it uses Binomial Tree Algorithm and b = 2(n≠1)
n when it uses Scatter-

AllGather Algorithm [81, 36].
• Sparse PS. Combining the communication time of push and pull with point-to-

point communications, it overall communication time is 2(n ≠ 1)(dG + dn
G)sn

GM/n/B.
• Sparse PS with the broadcast. When considering broadcast for Pull, the

overall communication time becomes 2(n ≠ 1)sn
GdGM/n/B + 2bdn

GM/B. We denote
this case as sparse PS with the broadcast.

For simplicity, we call the scheme with Point-to-point, One-shot aggregation, Par-
allelism, and Balanced communication as Balanced Parallelism.

• Balanced Parallelism. In Balanced Parallelism, the skewness ratio sn
G is

always 1. We replace the sn
G in the communication time of sparse PS as 1 and have

the communication time for Balanced Parallelism: 2(n ≠ 1)(dG + dn
G)M/n/B.

• Balanced Parallelism is optimal among schemes with Parallelism. It
is clear that Balanced Parallelism is much better than sparse PS when the skewness
ratio is large DNN models. The performance ratio of PS with broadcast to Balanced
Parallelism is sn

G
1+“n

G
+ n

n≠1
b“n

G
1+“n

G
>

sn
G+b“n

G
1+“n

G
. Because both sn

G and b are greater than
1, the ratio is also greater than 1. Hence, Balanced Parallelism always outperforms
sparse PS and sparse PS with broadcast in terms of communication time.

Lemma 3.4 implies that if we fix the choice for partition pattern to Parallelism,
the scheme with Point-to-point, One-shot aggregation, Parallelism, and Balanced
communication is always the best.

Lemma 3.5. When sparse tensors are partially or fully overlapped, the scheme with
Point-to-point, One-shot aggregation, Parallelism, and Balanced communication out-
performs the scheme with Hierarchy, Incremental aggregation, and Centralization be-
cause the latter cannot fully leverage the overlaps among sparse tensors to minimize
the tra�c volume.

Proof. Because One-shot aggregation cannot leverage the overlaps among sparse ten-
sors, the performance of communication schemes with One-shot aggregation is worse
than those with Incremental aggregation. Therefore, we only consider Incremental
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aggregation for schemes with Ring communication or Hierarchy communication. We
consider the best case for them, i.e., the skewness ratio is 1 after tensor partition with
Parallelism. In addition, we only need to compare the first step because they have
the same communication time in the second step. The communication time of the
first step in Balanced Parallelism is 2(n ≠ 1)dGM/n/B.

• Schemes with Ring and Incremental Aggregation. They have n ≠ 1
communication stages. The tensor density in the ith stage is di

G. Note that d1
G = dG.

Therefore, the communication time is 2 qn≠1
i=1 di

GM/n/B. Because tensors can get
denser after aggregation, we have di

G Æ dj
G when i < j and qn≠1

i=1 di
G Ø (n ≠ 1)dG. As

a result, the communication time of schemes with Ring and Incremental aggregation
is no less than that of Balanced Parallelism.

• Schemes with Hierarchy and Incremental aggregation. They have log n

communication stages. Because each partition has a hierarchical structure, the total
tra�c volume in the ith stage is d2i≠1

G
2i≠1 Mn and the total tra�c volume in all the log n

stages is V = qlog n
i=1

d2i≠1
G
2i≠1 Mn. Because d2i≠1

G Ø dG, we have V Ø qlog n
i=1

dG
2i≠1 Mn =

2(n≠1)dGM . Therefore, the tra�c volume received at each GPU is no less than 2(n≠
1)dGM/n and the communication time is no less than that of Balanced Parallelism.

In summary, Balanced Parallelism outperforms other PS schemes and the perfor-
mance of other schemes with Parallelism cannot be better than Balanced Parallelism.
Lemmas 3.2, 3.4, and 3.5 imply Theorem 3.1.2.

3.2.5 Numerical Comparison

As listed in Table 3.2, there are several communication schemes proposed to support
the synchronizations of sparse tensors [112, 172, 74, 111]. In this section, we will
compare their performance from an algorithmic perspective.
AGsparse. It adopts One-shot aggregation, Centralization, and separately collects
non-zero gradients and the corresponding indices [112]. It cannot leverage the overlaps
among sparse tensors to reduce the tra�c volume. Note that there are di�erent
implementations for AGsparse with di�erent communication patterns [199].



34

Schemes Communication Aggregation Partition Balance

AGsparse [112] Ring, Hierarchy, Point-to-point One-shot Centralization N/A
SparCML [172] Hierarchy Incremental Centralization N/A
Sparse PS [111] Point-to-point One-shot Parallelism Imbalanced
OmniReduce [74] Point-to-point One-shot Parallelism Imbalanced
Balanced Parallelism Point-to-point One-shot Parallelism Balanced

Table 3.2 : Comparison of di�erent communication schemes for sparse tensors based on

their dimensions.

SparCML. It adopts Hierarchical, Incremental aggregation, and Centralization [172].
According to Lemma 3.5, it cannot leverage the overlaps among sparse tensors to
reduce the tra�c volume. The performance of both AGsparse and SparCML depends
on the overlaps. The fewer overlaps, the closer their performance is to the optimal.
However, as shown in Figure 3.1, sparse tensors across GPUs in DNN models have
significant overlaps.
Sparse PS. Parameter Servers (PS) architecture [111, 102] is a communication
scheme that adopts Point-to-point, One-shot aggregation, and Parallelism. It has
two roles: workers and servers. For synchronizations of sparse tensors, workers push
sparse tensors to servers. After aggregation, workers pull aggregated tensors from
servers to update model parameters. We call this PS architecture for sparse tensors
as Sparse PS to distinguish it from the PS architecture for dense tensors. Because
Sparse PS evenly partitions tensors, it su�ers from imbalanced communications as
discussed in Section 3.2.4.
OmniReduce. It also adopts Point-to-point, One-shot aggregation, and Paral-
lelism [74]. OmniReduce consists of workers and aggregators. It splits a gradient
tensor into blocks of gradients and only sends non-zero blocks, i.e., blocks with at
least one non-zero gradient, to aggregators for aggregations. Compared to Sparse PS,
OmniReduce does not need to transmit indices for non-zero gradients and it has a
lower tra�c volume for communications. However, it also requires multiple aggrega-
tors for better scalability, just like multiple servers in PS. It evenly partitions tensors
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and its performance also su�ers from imbalanced communications.
Figure 3.7 numerically compares the performance of these communication schemes

to synchronize sparse tensors in NMT. The sparse data formats are as each scheme
proposed, i.e., OmniReduce uses tensor block; AGsparse, SparCML, and Sparse PS
use COO. We only consider their theoretical communication time and ignore other
overheads, such as the computation time for aggregations and the sparse tensor en-
coding and decoding overheads. Their communication times are normalized to Dense,
which is the synchronization time for dense tensors �.

The communication time of AGsparse linearly increases with the number of GPUs.
It performs worse than Dense with more than 40 GPUs because it does not leverage
the overlaps among sparse tensors to reduce the tra�c volume. Sparse PS is worse
than AGsparse due to the skewed distribution of non-zero gradients and imbalanced
communications among servers. It is even worse than Dense because it has to trans-
mit both non-zero gradients and the corresponding indices. OmniReduce outperforms
Dense with a small number of GPUs. However, its performance improvement is very
marginal with more than 64 GPUs. Due to the skewed distribution of non-zero gra-
dients, most of the non-zero gradients are in one partition, leading to imbalanced
communications. In addition, tensors become denser after aggregation. When split-
ting this partition into tensor blocks (e.g., each block has 256 gradients [74]), most
of them are non-zero blocks. Therefore, almost all gradients in this partition are sent
to one aggregator and it becomes the communication bottleneck. SparCML is worse
than Dense with a large number of GPUs due to the duplicated indices and their
gradients received at each GPU.

Now, let us consider a hypothetical scheme suggested by Theorem 3.1 called Bal-
anced Parallelism.
Balanced Parallelism. It adopts Point-to-point, One-shot aggregation, Parallelism,
and Balanced communication. In Figure 3.7, we assume its sparse data format is
COO for a fair comparison. Balanced Parallelism greatly outperforms existing com-

�We use Ring-Allreduce as an example [187]. It adopts Ring, incremental aggregation, Paral-
lelism, and Balanced communication.
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Figure 3.7 : Comparison of di�erent schemes for synchronizing sparse tensors in

NMT [120]. The sparse data formats are as each scheme proposed, i.e., OmniReduce uses

tensor block; AGsparse, SparCML, and Sparse PS use COO. For a fair comparison, the

data format of Balanced Parallelism is COO.

munication schemes. For example, existing schemes cannot reduce communication
time compared to Dense with 128 GPUs, but the communication time of Balanced
Parallelism is still 36% lower than Dense.
Takeaways. The sparsity in DNN models o�ers a great opportunity to optimize
communications in distributed training, but no existing schemes can fully unleash
this potential. Regardless of the sparse data formats, Balanced Parallelism is optimal
for the common case (see Theorem 3.1) and thus substantially outperforms existing
schemes such as SparCML [172] and OmniReduce [74]. However, no solution that
realizes Balanced Parallelism exists to date. We will show how this gap is closed in
the next section.

3.3 Zen

We propose Zen to leverage the sparsity in DNN models to minimize the synchro-
nization time in distributed training. We first formulate the problem for achieving
Balanced Parallelism and discuss two strawman solutions. We then develop a hierar-
chical hashing algorithm to approximately address the problem. When synchronizing
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sparse tensors, a communication scheme with COO has to transmit non-zero gradi-
ents and their indices, which double the tra�c volume. Therefore, we also design a
new data format for the indices to minimize the tra�c volume.

3.3.1 Problem Formulation

Balanced Parallelism has the same communication pattern, aggregation pattern, and
partition pattern as Sparse PS, but its communications are always well-balanced.
Therefore, we borrow the concepts of workers and servers from Sparse PS to Bal-
anced Parallelism. We also call its two communication operations as Push and Pull,
respectively.

Suppose there are n workers and n servers in Balanced Parallelism. Ii µ N+ is
the set of indices of non-zero gradients generated by worker i. We define the problem
to achieve Balanced Parallelism as follows.

Problem 3.1. Let I denote the union of {I1, I2, · · · , In}. We would like to have a
mapping f : I æ [n] such that:
1. For every i œ [n] and j œ [n], the cardinality of set {idx œ Ii|f(idx) = j} is equal

to |Ii|/n.
2. For every j œ [n], the cardinality of set {idx œ I|f(idx) = j} is equal to |I|/n.

Here we elaborate more on the two requirements for the mapping f accordingly
as below:
1. Load balance in Push. For every worker, mapping f needs to decompose its

non-zero gradients evenly into n partitions. Therefore, workers can transmit the
same amount of non-zero gradients to each server.

2. Load balance in Pull. Each of the servers should have the same number of non-
zero gradients after aggregation. It also implies that the same index from di�erent
workers should be sent to the same server.

Problem 3.1 assumes the same number of workers and servers, but it is easy to
generalize this problem to cases in which the number of workers and servers are
di�erent.
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3.3.2 Strawman Solutions

Because exactly solving Problem 3.1 is challenging, we will explore the opportunities
for approximate solutions, including both data-dependent and data-independent so-
lutions. Before discussing the solutions, we first define the imbalance ratio to measure
the performance of algorithms to approximately solve Problem 3.1.

Definition 3.6 (The imbalance ratio). Given a mapping f that decompose Ii into n

partitions, which are denoted as {I1
i , · · · , In

i }, the imbalance ratio of Push with f is
maxi,jœ[n]{n|Ij

i |/|Ii|}.
Let I denote the union of {I1, I2, · · · , In} and the sets of indices at the n servers

after gradient aggregation are {I1, I2, · · · , In}. The imbalance ratio of Pull with f is
maxiœ[n]{n|Ii|/|I|}.

Based on Definition 3.6, the imbalance ratio of push in Sparse PS equals the skew-
ness ratio, and in Balanced Parallelism is 1. Our goal is to minimize the imbalance
ratio for any distributions of non-zero gradients in distributed training.
Data-dependent solutions. Due to di�erent sets of indices on di�erent workers,
data-dependent solutions need to analyze their overall distribution and calculate one
mapping (see Problem 3.1) for all workers, inevitably incurring non-negligible compu-
tation overheads. Therefore, we cannot a�ord to apply a data-dependent algorithm
and obtain a mapping f for every iteration. A possible approach is to compute f

periodically and maintain it for the next iterations.
However, this approach can still lead to high imbalance ratios due to the varying

distributions of the indices across iterations. One strawman following this approach
is to sort the index set I, evenly partition it into n parts, and use the boundary
indices as the thresholds to partition the index sets in the next iterations. When we
compute the thresholds every 1000 iteration for NMT model with n = 16 and apply
these thresholds to the following iterations, the imbalance ratio of push fluctuates
between 1.4 and 5.1, causing imbalanced communications among servers. Moreover,
the imbalanced communications introduced by data-dependent solutions make it hard
to estimate the iteration time. Many resource scheduling mechanisms for GPU clus-
ters assume predictable and stable iteration times for allocating resources to DNN
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Algorithm 3.1 A strawman solution with hashing
Input: G is a dense tensor and I µ N+ is a set of indices of its non-zero gradients. n œ N+ is the

number of partitions. r œ N+ is the memory size for each partition. h : N+ æ [nr] is an
universal hash function.

Output: The partitioned sparse tensors.
1 Function Main(I, G, h(·)):

2 Allocate memory x Ω 0
n◊r

foreach idx œ I in parallel do

3 p Ω Âh(idx)/rÊ q Ω h(idx) mod r x[p][q] Ω idx

4 end

5 output = [] for i Ω 0 to n ≠ 1 do

6 indices = nonzero(x[i]) values = G[indices] output.append((indices, values))
7 end

8 return output;

training jobs [143, 163, 159, 122]. It is cumbersome to schedule GPU resources with
fluctuating communication time.
Strawman data-independent solution. Hashing algorithms have been widely
applied to address load imbalance problems in various domains, such as distributed
system [99, 193] and distributed database [72, 116]. We discuss a straightforward
hashing algorithm here to approximately solve Problem 3.1. The pseudocode is il-
lustrated in Algorithm 3.1. Note that we must leverage multiple threads in GPUs to
perform hash functions to reduce computation overhead.

Given a dense tensor G, the set of indices of its non-zero gradients is I. Algo-
rithm 3.1 first allocates a memory x with shape n◊r, where n represents the number
of partitions and r is the memory size for each partition. For every idx œ I, it uses a
given universal hash function [46] h : N+ æ [nr] to generate the hash value h(idx),
where nr is the range of hash function h. Next, it writes the idx to the (h(idx)
mod r)th location in partition Âh(idx)/rÊ. The hashing operation is performed in
parallel to minimize the computation overhead [217]. After that, it extracts the
non-zero indices from the memory of each partition and uses them to look up the
corresponding gradients from G. Finally, it returns a sparse tensor for each partition
and pushes them to the corresponding servers.
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(a) Memory size vs. cost to extract indices. (b) Memory size vs. hash collision rate.

Figure 3.8 : Larger memory size reduces the hash collision, but it leads to higher extraction

overhead.

Although a universal hash function can naturally provide an approximation to
Problem 3.1, it is a lossy operation. Two indices can be hashed to the same location,
but only one index can be written into the memory and the other is overwritten,
causing the information loss of gradients.

One possible approach to reducing the information loss is to increase the memory
size, but it leads to a dilemma between the information loss and the incurred com-
putation overhead. After writing the indices into the memory, the algorithm needs
to extract the indices, which are the non-zero values in the memory. We profile the
performance of the built-in nonzero() API in PyTorch 1.12 on NVIDIA A100 GPUs
to extract the non-zero gradients of a tensor. We set the tensor size as 214M pa-
rameters, which equals the embedding table size in DeepFM, and the performance
is illustrated in Figure 3.8a. The extraction cost is 19.2ms when the memory size is
4GB and the density is 1%; it increases to 29.1ms when the density is 20%. This
extraction cost is unacceptable as the communication time of the dense tensors in
DeepFM is only around 150ms with 128 GPUs and a 100Gbps network. However,
reducing the memory size can cause non-negligible information loss. For example,
when the memory size is 0.85GB, which equals the tensor size, the extraction cost is
5.8ms for the density of 20%, but 15.8% gradients are lost due to hash collision, as
shown in Figure 3.8b. We will show in Section 3.4.2 that the information loss can
harm model accuracy.
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3.3.3 A Hierarchical Hashing Algorithm

We develop a hierarchical hashing algorithm that ensures no information loss to
achieve balanced communications in distributed training with negligible extraction
overhead. Before introducing our algorithm, we first discuss the possible approaches.
Approach with one hash function. As discussed in Section 3.3.2, balancing com-
munications with only one hash function can lead to significant information loss due
to hash collision. One approach to address this information loss issue is to check hash
collision and write all the colliding indices into a separate memory chain [168]. The
hashing operation is performed in parallel, but it has to use an atomic operation to
serially write the indices into the separate memory chain (denoted as serial memory).
Otherwise, the indices in the serial memory can still be overwritten. Unfortunately,
we observe that serial writing is costly when the hash collision rate is high because
only one thread can operate at one time.
Approach with multiple hash functions. Another approach is to rehash a col-
liding index with a new hash function to another location. There is a chance that
this new location is available. However, this approach can cause incomplete aggre-
gations. Because di�erent GPUs have di�erent sets of indices for non-zero gradients,
their sequences of indices being hashed are also di�erent. Therefore, the location of
a particular index can be di�erent across GPUs. For example, two indices idx1 and
idx2, where idx1 < id2, are hashed to the same location with the first hash function.
GPU 1 has idx2; GPU 2 has both idx1 and idx2. In GPU 1, the location of idx2

is determined by the first hash function, but in GPU 2, the location of idx2 is de-
termined by the second hash function because the location hashed by the first one
has been occupied by idx1. Subsequently, partitioning the memory will lead to the
same index assigned to di�erent partitions at di�erent GPUs, resulting in incomplete
aggregations.
Our approach. We propose a hierarchical algorithm with multiple hash functions
to guarantee complete aggregations. The first-level hash function determines the par-
tition that an index belongs to and guarantees that an index will belong to the same
partition across all GPUs. The second-level hash functions determine its locations in
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Figure 3.9 : Demonstration of the hierarchical hashing algorithm with n = 3, k = 2,

r1 = 4, and r2 = 3. We perform parallel hashing on the indices. For each index, we use

the hash function h0 to assign its partition. Next, we use the hash function h1 to assign

it the first location. However, because this location is occupied, we rehash it with function

h2 to the fourth location. As it is also occupied we serially write the index into the serial

memory with an atomic operation.

this partition. However, hash collision still exists even with multiple hash functions.
We observe that the collision rate is less than 1% with four hash functions and the
overhead to write the colliding indices into the serial memory becomes acceptable.
Therefore, our approach also uses serial memory to achieve no information loss after
multiple hashing.

We illustrate the hierarchical hashing algorithm in Figure 3.9. The pseudocode of
the hierarchical hashing algorithm is shown in Algorithm 3.2. Given a dense tensor
G and the indices of its non-zero gradients I, it allocates a memory x with shape
n ◊ (r1 + r2), where n is the number of partitions, r1 is the memory size for parallel
hashing operations, and r2 is the serial memory size. It performs a hashing operation
for every idx œ I in parallel (Lines 4-17). A universal hash function h0 : N+ æ [n]
is used to locate idx to partition p = h0(idx) (Line 5). The algorithm also needs k

universal hash functions H = {h1, · · · , hk} with hi : N+ æ [r1]. After determining
the partition p, the algorithm attempts to find an available destination x[p][h1(idx)]
with h1. If this location is available, idx is written into it. Otherwise, the algorithm
rehashes idx with h2 to find a new location. It rehashes an index for at most k rounds



43

Algorithm 3.2 Hierarchical Hashing Algorithm
Input: G is a dense tensor and I µ N+ is a set of indices of its non-zero gradients. n œ N+

is the number of partitions. Each partition has memory size r1 + r2, where r1 œ N+ and
r2 œ N+ are the memory sizes for parallel and serial operations, respectively. h0 : N+ æ [n]
is a universal hash function. H = {h1, · · · , hk} is a set of universal hash functions where
hi : N+ æ [r].

Output: The partitioned sparse tensors.
9 Function hierarchical_hash(I, G, h0, H):

10 Allocate memory x Ω 0
n◊(r1+r2)

11 Allocate atomic counters c Ω r1n

12 foreach idx œ I in parallel do

13 p Ω h0(idx)
14 for i Ω 1 to k + 1 do

15 q Ω hi(idx) if i = k + 1 then

16 q Ω atomicAdd(c[p], 1)
17 x[p][q] Ω idx

18 end

19 if x[p][q] == 0 then

20 x[p][q] Ω idx break

21 end

22 end

23 end

24 output = [] for i Ω 0 to n ≠ 1 do

25 indices = nonzero(x[i])
26 values = G[indices]
27 output.append((indices, values))

28 end

29 return output

and uses hi as the hash function for round i until it finds an available destination
(Lines 6-16). The algorithm writes it to the serial memory allocated to partition p

after k rehashes (Lines 8-11). Serial writing is an atomic operation (Lines 9-10) to
ensure no information loss Once all indices are written into the memory, it extracts
sparse tensors from the memory (Lines 19-23).
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We next analyze the imbalance ratio of Algorithm 3.2 and highlight its properties.
Guaranteed imbalance ratio. The imbalance ratio of Algorithm 3.2 is guaranteed
by the universal hash function h0 because it determines the partition of each index.

Theorem 3.2 (Load Balance of Algorithm 3.2). Given a dense tensor G with |G|
parameters. Algorithm 3.2 provides a mapping f : I æ [n] such that
1. With probability at least 1 ≠ o(1), its imbalance ratio of Push is at most 1 +

�(
Ò

n log n
|G|dG

).
2. With probability at least 1 ≠ o(1), the imbalance ratio of Pull is at most 1 +

�(
Ú

n log n
|G|dn

G
).

Proof. The imbalance ratio of Algorithm 3.2 is only determined by h0 : N+ æ [n],
while the hash function set H focuses on exact memory write.

The number of indices in Ii is |G|dG, where dG is the density of G. Since h0 is
data-independent, part 1 in Problem 3.1 can be formulated as: given |G|dG balls, we
would like to toss them into n bins with the universal hash function h0. Taking the
results from [37], the maximum load of the bins is at most |G|dG

n + �(
Ò

|G|dG log n/n)
with probability at least 1 ≠ o(1). Recall the definition of the imbalance ratio of push
in Definition 3.6:

Pushn
h0 = max

i,jœ[n]

n|Ij
i |

|Ii|
.

Because max{|Ij
i |} Æ |G|dG

n + �(
Ò

|G|dG log n/n), we have

Pushn
h0 Æ

|G|dG + �(
Ò

|G|dGn log n)
|G|dG

= 1 + �(
Û

n log n

|G|dG
),

with probability at least 1 ≠ o(1). Thus, we finish the proof of the first part.
Since h0 is data-independent, part 2 in Problem 3.1 can be formulated as: given

|I| = |G|dn
G balls, we would like to toss them into n bins with the universal hash

function h0. The maximum load of the bins is at most |G|dn
G

n + �(
Ò

|G|dn
G log n/n)
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with probability at least 1 ≠ o(1). Recall the definition of the imbalance ratio of pull
in Definition 3.6:

Pulln
h0 = max

iœ[n]

n|I Õ
i |

|I| .

Because max{|I Õ
i |} Æ |G|dn

G
n + �(

Ò
|G|dn

G log n/n), we have

Pulln
h0 Æ

|G|dn
G + �(

Ò
|G|dn

Gn log n)
|G|dn

G

= 1 + �(
Û

n log n

|G|dn
G

),

with probability at least 1 ≠ o(1). Thus, we finish the proof of the second part.

Because n log n is orders of magnitude smaller than |G|dG and |G|dn
G, Algo-

rithm 3.2 performs a very good approximation to the exact solution of Problem 3.1
for both push and pull operations, achieving load-balanced communications among
workers and servers. As shown in Section 3.4.3, its practical imbalance ratio is always
less than 1.1 for the four DNN models we study in the section. Note that we impose
no assumptions on data distributions and only just use the property of universal hash-
ing defined on positive integers. Hence, Algorithm 3.2 obtains a general theoretical
guarantee for di�erent distributions of non-zero gradients in DNN training.
No information loss. One may be concerned that two indices can be hashed to the
same available location at the same time, leading to information loss. Fortunately,
the probability of this special case is negligible with the probability less than 10≠5 in
our implementation on GPUs. Zen can use a write-and-read mechanism to check this
collision. After memory writing, a thread reads the value stored in the memory. If
the value is not what it writes, this thread takes a rehash.
Negligible extraction overhead. Thanks to multiple hashing functions and the
serial memory, Algorithm 3.2 can achieve no information loss with very small memory
size. The incurred overhead to extract the indices from the memory after hashing
(Line 20 in Algorithm 3.2) becomes negligible.
Strength in parallelizable computing. Because the computations for di�erent
indices are independent of each other, it enables Algorithm 3.2 to use multiple threads
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to hash and rehash them. Although the indices written in the memory are in a
random order, there is no need to sort them because their orders have no e�ect on
the aggregated results.
Hash consistency among workers. Algorithm 3.2 determines the partition p of
each index with h0. To ensure that the same index from di�erent workers can be sent
to the same server, Zen allocates the same h0 to all the workers.

Zen can support di�erent optimizer, such as SGD [175], Adam [56], and Ada-
Grad [70]. The computation of an optimizer has two steps: gradient synchronization
and parameter update. Zen decouples the two steps following BytePS [94]. It aims to
minimize the communication time of gradient synchronization. After sparse tensors
are synchronized, all GPUs have the same aggregated gradients, with which they can
update the parameters of the DNN model individually.

3.3.4 Minimizing the Indices Overhead with Hash Bitmap

There are several sparse formats to represent sparse tensors for their synchronization.
Unfortunately, none of them can minimize the overhead incurred by the indices for
non-zero gradients. We assume the data type of gradients is FP32.

• COO. It is e�cient with a low tensor density [217, 115]. However, it doubles the
tra�c volume and becomes ine�cient for a high density. As shown in Figure 3.1b,
tensors get denser after aggregation. For example, the average tensor density of
BERT increases from 1.06% to 40.8% after the aggregation of sparse tensors from
128 GPUs. Theoretically, transmitting sparse tensors in Pull can reduce the tra�c
volume by 2.5◊ compared to transmitting dense tensors, but the reduction shrinks
to 1.2◊ due to the indices for non-zero gradients.

• Tensor block. It is used in OmniReduce [74]. A dense tensor is split into
blocks of gradients and only non-zero blocks are transmitted. However, it is also
ine�cient when the tensor density is high. When splitting a tensor with high density
into tensor blocks (e.g., each block has 256 gradients), most of them have at least one
non-zero gradient and become non-zero tensor blocks. The communication scheme
has to transit almost all the gradients.
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Figure 3.10 : An illustration of the hash bitmap.

• Bitmap. It only needs one bit to indicate whether a gradient is zero or not.
Unfortunately, a straightforward bitmap still incurs non-negligible tra�c volume to
identify non-zero gradients. When the dense tensor G is evenly partitioned, the indices
of non-zero gradients in each server are in a sub-range of [1, |G|], where |G| is the
number of gradients in G. For example, when |G| = 15 and there are three servers,
the index range in Server i is [5i + 1, 5(i + 1)]. The extra bitmap size required to
represent the indices of non-zero gradients in each server is |G|/n/32 when the data
type of gradients is FP32. The total bitmap size received by each worker is constantly
|G|/32. When the tensor size of G is 856MB, which equals the embedding table size
in DeepFM, the total bitmap size is 27MB. Although Algorithm 3.2 enables balanced
communications, the non-zero gradients in each server are randomly distributed in the
whole range. If we still use a bitmap to represent the indices, the extra bitmap size
in each server is |G|/32 and the total bitmap size received at each worker becomes
n|G|/32, which linearly increases with the number of servers. When there are 16
servers, the total bitmap size is 428MB.
Hash Bitmap. We develop a hash bitmap for Zen to minimize the overhead to
represent indices for non-zero gradients in Pull. Given a dense tensor G and h0 in
Algorithm 3.2, the set of indices Ii = {idx œ [1, |G|] | h0(idx) = i} in each worker that
should be pushed to Server i is determined, though it is not in a continuous range.
Since Ii and Ij are disjoint when i ”= j, it provides an opportunity to construct the
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Algorithm 3.3 The hash bitmap
Input: G is a dense tensor. Ii = {idx œ [1, |G|] | h0(idx) = i}, where h0 is defined in Algorithm 3.2.

30 Function hash_bitmap_encode(G, Ii):

31 local_gradients = G[Ii]
32 hash_bitmap = bitmap_encode(local_gradients)
33 return hash_bitmap

34 Function hash_bitmap_decode(Ii, hash_bitmap):

35 bitmap_indices = bitmap_decode(hash_bitmap)

36 indices = Ii[bitmap_indices]
37 return indices

bitmap based on Ii, rather than the whole range.
Figure 3.10 illustrates how the hash bitmap works for I0 with |G| = 15 and three

servers. The indices for the two non-zero gradients are {5, 7}. hash_bitmap_encode()

is used to encode the indices. Given a dense tensor G, it first extracts the local gradi-
ents according to the indices in I0. It then encodes the local gradients into a bitmap.
Because the second and the third gradients are non-zero, the second bit and the third
bit in the hash bitmap are 1 and the other bits are 0. hash_bitmap_decode() is
used to decode the hash bitmap to a set of indices. It first decodes a hash bitmap
to the bitmap indices, which are the indices of 1. For example, because the second
and the third bits in the hash bitmap are 1, the bitmap indices are {2, 3}. It then
uses the bitmap indices as the indices to extract the corresponding values in I0 as the
global indices for non-zero gradients. In this example, the values are {5, 7}, which
are exactly the indices for the two non-zero gradients. The pseudocode is shown in
Algorithm 3.3.

The function hash_bitmap_encode() is invoked at each server, which then broad-
casts the hash bitmap to all the workers. After each worker receives the hash bitmaps
from all the servers, it invokes hash_bitmap_decode() to decode the hash bitmaps
to the indices with the corresponding Ii. Note that Ii is computed and sorted o�ine
and it remains unchanged for the same h0 in both servers and workers.

Theorem 3.3. In Pull of Zen, the total hash bitmap size received at each worker
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from all servers is constantly |G|/32.

Proof. Suppose there are n servers. The set of indices that should be pushed to Server
i is Ii = {idx œ [1, |G|] | h0(idx) = i}. With hash_bitmap_encode(), the size of the
hash bitmap encoded at Server i is |Ii|/32. Because each worker needs to receive the
hash bitmap from all the servers, the total size is qn≠1

i=0 |Ii|/32 = |G|/32.

Zen still uses COO to represent sparse tensors in Push due to the low tensor
density. The benefit of replacing COO with hash bitmap is limited.

3.4 Evaluation

3.4.1 Experimental Setup

Testbeds. There are two testbeds in the evaluation. The first testbed contains 16
GPU machines equipped with NVLink and the machines are connected by a 25Gbps
network with TCP/IP. Each machine has 8 NVIDIA V100 GPUs (32 GB GPU mem-
ory) and 2 CPUs/48 cores (Intel Xeon 8260 at 2.40GHz). The second testbed con-
tains 16 GPU machines equipped with NVLink and the machines are connected by
a 100Gbps network with RDMA. Each machine has 8 NVIDIA A100 GPUs (40 GB
GPU memory) and 4 CPUs/256 cores (AMD EPYC 7742 at 2.25GHz). Each machine
runs Ubuntu 20.04 and the software environment includes CUDA-11.0, PyTorch-1.8.0,
Horovod-0.22.1, NCCL-2.7.8, and CuPy-11.0.
Workloads. We use four popular DNN models for both recommendation systems
(DeepFM [83]) and language processing (LSTM [98], NMT [120], and BERT [67]).
Table 3.1 lists their training datasets and their batch sizes. The per-GPU batch size
is kept constant as the number of GPUs increases.
Baselines. We compare Zen with AGsparse, SparCML, Sparse PS, and OmniReduce.
We use AllReduce in Horovod [187] as Dense for the synchronization of dense tensors.
We also provide the upper bound on the training throughput of DNN models (Upper
Bound). This is obtained by assuming the lower bound † of the communication time
can be achieved by leveraging the sparsity in DNN models.

†For any GPU involved in training, it must receive non-zero gradients in G from all other GPUs
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(a) LSTM (b) DeepFM

(c) NMT (d) BERT

Figure 3.11 : Training throughput of DNN models with 25Gbps TCP/IP networks.

Implementation. The hash function we use in Algorithm 3.2 is MurmurHash[32].
We only need to set the seeds for MurmurHash to generate di�erent hash functions.
At the beginning of training, Zen generates a set of random seeds and then broadcasts
the seeds to all the GPUs to ensure that they have the same set of hash functions in
Algorithm 3.2. Because NVLink is equipped in GPU machines, Zen communicates
dense tensors within machines with ReduceScatter/AllGather [81, 199].

3.4.2 End-to-end Experiments

In this section, we present the end-to-end DDT e�ciency of Zen on the four models
and compare it with the baselines. We set k = 3, r1 = 2|G|dG, and r2 = r1/10 for
Algorithm 3.2.

during synchronization. The overall density of sparse tensors from other n≠1 GPUs after aggregation
is d

n≠1
G . The lower bound of communication time is d

n≠1
G M/B, without transmitting the indices.
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Training throughput improvement. Figure 3.11 shows the results with a 25Gbps
TCP/IP network. Zen outperforms all baselines by processing more samples in a
second. In LSTM model, the best baseline is SparCML. Zen achieves up to 1.67◊
speedup over SparCML and 3.1◊ speedup over AllReduce in the end-to-end training
throughput. In both DeepFM and NMT with 16 machines, the best baseline is
OmniReduce. Zen achieves 1.44◊ speedup and 1.51◊ speedup over OmniReduce for
DeepFM and NMT, respectively. The performance of Zen for BERT is very close
to the upper bound; it achieves 1.13◊ speedup over AllReduce and 1.07◊ speedup
over OmniReduce. As we increase the number of machines, the benefits of Zen over
SparCML and OmniReduce are enlarged, indicating Zen’s great scalability. When we
increase the network bandwidth from 25Gbps to 100Gbps, Zen still has great end-to-
end speedups in DDT, as shown in Figure 3.12. Specifically, in LSTM model, Zen is
up to 1.50◊ faster than SparCML, which is the best baseline. In DeepFM and NMT,
Zen is up to 1.46◊ and 1.45◊ faster than AllReduce and up to 1.34◊ and 1.39◊
faster than the best baseline OmniReduce. These results demonstrate that Zen can
fully leverage sparsity in DNN models to optimize their training e�ciency.
Communication improvement. The performance of Zen is driven by the reduc-
tion in communication time. Figure 3.13 shows the speedups of di�erent communica-
tion schemes compared to AllReduce with 16 machines and a 25Gbps network. The
speedup of OmniReduce is up to 1.58◊. We also observe the performance of AGsparse,
Sparse PS, and SparCML can be even worse than AllReduce in some cases. They use
COO as the sparse format. The communication time of AGsparse linearly increases
with the number of machines. Sparse PS has severe imbalanced communications and
it has to transmit both gradients and indices. With a high density, the sparse tensor
size with COO is larger than the dense tensor size. With SparCML, the overlaps
among sparse tensors can be received multiple times at each GPU. In contrast, Zen
achieves 6.77◊ speedup for LSTM and 3.0◊ speedup for BERT. It outperforms Spar-
CML and OmniReduce by up to 1.82◊ and 4.09◊, respectively. Zen also achieves
2.10◊ speedup for DeepFM and 1.97◊ speedup for NMT.
Model accuracy. We will demonstrate that Zen can preserve the iteration-wise



52

(a) LSTM (b) DeepFM

(c) NMT (d) BERT
Figure 3.12 : Training throughput of DNN models with 100Gbps RDMA networks.

accuracy of DNN models as AllReduce because there is no information loss in Al-
gorithm 3.2. We also take the strawman data-independent solution (refer to Sec-
tion 3.3.2) as a baseline. It can achieve balanced communications at the cost of
information loss due to hash collision, which is related to the used auxiliary memory
size. Given a dense tensor |G| with the density dG, the memory size used in Zen
is 2|G|dG. We vary the memory size in the strawman to evaluate the impacts on
accuracy with di�erent information loss rates. Figure 3.14 displays the test accuracy
of DeepFM with di�erent schemes. Zen and AllReduce have the same iteration-wise
accuracy during training. When the memory size is 2|G| in the strawman (denoted
as 2|G| Strawman in Figure 3.14), the information loss rate is around 9% and the
training accuracy has a noticeable drop compared to training with AllReduce. In-
creasing the memory size to 8|G| (denoted as 8|G| Strawman) can reduce the rate
to around 1% and it almost has no harm on the accuracy. However, it can lead to
costly overhead to extract the indices from the memory. The communication time
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Figure 3.13 : Communication

speedups for embedding layers in four

DNN models compared to AllReduce.

Figure 3.14 : DeepFM Accuracy

with di�erent schemes. We set the

strawman with di�erent memory sizes.

is around 60ms, but the extraction overhead is around 45ms with A100 GPUs. In
contrast, the extraction overhead in Zen after hashing is only around 2ms thanks to
the small memory size.

3.4.3 Microbenchmarks

Guaranteed load balance. Figure 3.15 presents the imbalance ratio of DeepFM
using Sparse PS and Zen, respectively. Figure 3.15a shows that the imbalance ratio
of Push with Sparse PS is severe due to the skewed distribution of non-zero gradients
and it gets worse with more machines. It leads to imbalanced communications among
servers and one of the servers has to receive most the of non-zero gradients. Similarly,
the imbalance ratio of Pull with Sparse PS is also very high. In contrast, applying Zen
can significantly reduce the imbalance ratio in both Push and Pull. Zen can always
keep the imbalance ratio smaller than 1.1, regardless of the number of machines, as
shown in Figure 3.15b. This conclusion is consistent across di�erent DNN models. It
demonstrates that Zen guarantees well-balanced communications in DDT.
A study on parameters for Algorithm 3.2. We simulate a tensor with size
214M (same as the embedding gradients in DeepFM) and vary its density to perform
a study on both r1 and k in Algorithm 3.2. We first study parameter r1. We set
r2 = r1/10 and k = 3. As shown in Figure 3.16a, when we increase r1 from |G|dG to
2|G|dG, there is a notable reduction in the operation cost because the larger memory



54

(a) Push (b) Pull
Figure 3.15 : The imbalance ratio of DeepFM in Pull and Push.

(a) Di�erent memory sizes. (b) Di�erent number of rehash.

Figure 3.16 : The computation overhead of Algorithm 3.2.

size increases the probability of successful parallel writing and reduces the workload
of serial writing. But when we further increase r1 from 2|G|dG to 4|G|dG, it leads
to a higher computation time. There are two reasons behind this e�ect. Firstly, the
workload of serial writing is already low with 2|G|dG memory. Further increasing r1

only marginally helps reduce the computation overhead. Secondly, a larger memory
size can increase the computation overhead to extract the indices (see Algorithm 3.2)
and thus degrades the overall performance. Figure 3.16b shows the computation costs
versus k when we use 2|G|dG memory. Increasing k from 1 to 3 can help reduce the
operation cost as it alleviates the serial writing workload, but k = 3 and k = 4 have
very similar operation costs.
The hash bitmap. We demonstrate the e�ectiveness of the hash bitmap to repre-
sent the indices of non-zero gradients. Figure 3.17 shows the tensor data size with
di�erent sparse formats. The sizes are normalized to the dense tensor and there are



55

Figure 3.17 : The e�ectiveness of the

hash bitmap.
Figure 3.18 : The performance

breakdown of Zen.

16 servers. The tensor density is the total density of all servers after aggregation.
The gap between the hash bitmap and COO increases with the tensor density. It also
significantly outperforms the bitmap. In addition, the hash bitmap can still reduce
the tra�c volume with a density of 95% compared to the dense tensor, but the bitmap
and COO cannot save the volume when the density is greater than 50%. The perfor-
mance of tensor blocks varies with the distribution of non-zero gradients. For some
sparse tensors in the four DNN models we study, it can transmit higher tra�c volume
than COO since a non-zero block has more zero gradients than non-zero gradients.
Zen’s performance breakdown. We also break down the performance of Zen
by Algorithm 3.2 and the hash bitmap format. Figure 3.18 illustrates the speedup
breakdown over AllReduce with 16 machines and a 25Gbps network. It can be seen
that the primary performance benefits of Zen come from Algorithm 3.2, with the hash
bitmap format providing noticeable additional benefits. For example, when the data
format is COO after applying Algorithm 3.2, the speedup is 4.97◊ and 2.39◊ for
LSTM and BERT, respectively. Replacing COO with the hash bitmap can further
improve the speedups by 36% and 26%.
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Chapter 4

Espresso: Unleashing the Full Potential of
Gradient Compression with Near-Optimal Usage

Strategies

Zen utilizes the sparsity in gradient tensors to minimize communication time for gra-
dient synchronization and it can greatly reduce the communication time and improve
training throughput when tensors have high sparsity. When tensors only have low
sparsity in the training of some DNN models, gradient compression (GC) algorithms
are applied to shrink the communicated data size by compressing gradient tensors.
Although these algorithms reduce communication time and thus theoretically increase
training throughput, they present practical challenges due to additional computation
overheads when applying GC algorithms to DDL. In this chapter, we will propose a
gradient compression framework named Espresso that optimizes the benefits of GC
algorithms for compression-enabled DDL.

4.1 Introduction

The growing concern of communication bottlenecks in DDL due to the exacerbat-
ing tension between computation and communication in DDL has motivated numer-
ous works, such as wait-free back-propagation mechanism [231, 112], priority-based
scheduling [160, 91, 85], and optimized aggregation algorithms [94, 57, 187]. However,
even with the latest highly-optimized BytePS [94] which incorporates these state-of-
the-art approaches, communications for gradient synchronization still account for
42% and 49% of the total training time of GPT2 [164] and BERT-base [67] with 64
NVIDIA V100 GPUs in 8 machines connected by a 100Gbps Ethernet network.

Gradient compression (GC) algorithms [192, 27, 115, 219, 220, 186, 100, 28] have
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a great potential to address the communication bottlenecks in DDL by saving up
to 99.9% of the gradient exchange while preserving the training accuracy and con-
vergence [223, 192, 93]. However, the training speedups of DDL with GC are only
modest because of the costly compression operations. For example, applying GC to
the aforementioned GPT2 training only achieves a 1.15◊ speedup. This motivates us
to revisit GC from the system perspective to fully unleash its benefits for DDL.

Applying GC to a DNN model can reduce the communication time, but it also
incurs additional compression overheads. The training throughput of compression-
enabled DDL is determined by the compression strategy, which refers to the compression-
related decisions for each tensor in a DNN model, such as whether to compress, the
type of compute resources (e.g., CPUs or GPUs) for compression, and the communi-
cation schemes for compressed tensors. DDL typically involves both communications
inside a machine and across machines. Therefore, another decision is whether to
apply GC to intra- or inter-machine communication or both.

Unfortunately, it is very challenging to make these decisions because of the in-
tricate interactions among tensors. Therefore, the first research question we have
to answer to unleash the benefits of GC is how to express any possible compression
strategies and the corresponding interactions among tensors for any DDL training
job. Because of the extremely large search space, even if all the strategies and inter-
actions are available, the time to find the optimal one can be prohibitive. Hence, the
second research question is how to analyze the interactions among tensors to quickly
select a near-optimal compression strategy.

In this chapter, we propose Espresso to answer these two questions in order to
maximize the benefits of GC. We make the following contributions.
• We develop a decision tree abstraction for the compression strategy and empirical
models for the time of tensor computation, communication, and compression to an-
swer the first question. The abstraction can express any possible compression options
of any tensor regardless of di�erent tensor sizes and GC algorithms. Based on the
abstraction, Espresso can express any compression strategies of any DDL training
jobs. The empirical models enable Espresso to derive the timeline of tensor computa-
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tion, communication, and compression of all tensors in a DNN model, and thus their
intricate interactions with any compression strategy.
• We propose a compression decision algorithm for quickly selecting a near-optimal
compression strategy to answer the second question. Espresso analyzes the interac-
tions among tensors to eliminate a large number of suboptimal compression strategies.
Based on the analysis, Espresso proposes a prioritization method for applying GC to
tensors to maximize the benefits, and considers the overlapping time among tensor
computation, communication, and compression to make compression decisions for
each tensor. Because of di�erent performance trade-o�s of GPUs and CPUs for GC,
Espresso finds a provably optimal solution to o�oad compression from GPUs to CPUs
to minimize the resource contentions with tensor computation.
• We implement a fully featured system for Espresso. We implement both GPU and
CPU compression libraries. We also implement communication libraries to support
di�erent communication schemes in both intra- and inter-machine communications.
Experimental evaluations demonstrate that with 64 GPUs, Espresso can improve
the training throughput by up to 269% compared with BytePS. It also outperforms
the state-of-the-art compression-enabled system (i.e., HiPress [38]) by up to 77%
across representative DNN training jobs. Moreover, the computational time needed
by Espresso to select the compression strategy is measured in milliseconds, and the
performance di�erence between the selected strategy and the optimal strategy is only
a few percent.

4.2 Background

4.2.1 Computation and Communication Tension in DDL

Because DDL typically employs multiple machines and each machine has multiple
GPUs, it involves both intra-machine and inter-machine communication. Hierar-
chical communication (as shown in Figure 4.1) is widely applied in DDL frame-
works [94, 187, 112, 50] because the intra-machine network is usually faster than
the inter-machine network. There are three phases for gradient synchronization in hi-
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Figure 4.1 : Hierarchical communication in DDL.

erarchical communication: 1) the gradients are first aggregated among GPUs within
one machine; 2) they are then aggregated across machines; and 3) the aggregated
gradients are communicated within one machine again to ensure that all GPUs have
the same synchronized results. Flat communication, i.e., all GPUs join the same col-
lective operation and have only one communication phase, is also supported in some
frameworks [187, 112].

As discussed in Section 2.3, there exists an exacerbating tension between computa-
tion and communication in DDL. Single precision (FP32) is a common floating point
format representing the weights and gradients in deep learning. When gradients are
communicated in FP32 for synchronization, it can lead to costly communication time
and thus poor scalability in DDT. To illustrate, we trained real-world DNN models on
BytePS-0.2.5 [94], a highly-optimized DDL framework, with 64 NVIDIA V100 GPUs
(8 GPUs per machine) and a 100Gbps inter-machine Ethernet network. We measure
the scaling factor [234, 74], which is defined as Tn

nT , where T is the training through-
put of a single device and Tn is the throughput of DDL with n devices. BytePS only
achieves the scaling factors of 0.58 and 0.51 for the training of two representative and
popular DNN models, GPT2 and BERT-base, with NVLink 2.0 for GPU-to-GPU
interconnection, as shown in Table 4.1. To put this into context, the training time of
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Model Networks FP32 GC with GPU GC with CPU

GPT2 NVLink, 100Gbps 0.58 0.67 (+15%) 0.64 (+10%)
BERT-base NVLink, 100Gbps 0.51 0.55 (+8%) 0.61 (+20%)

LSTM PCIe, 25Gbps 0.46 0.43 (≠6%) 0.42 (≠9%)

Table 4.1 : The scaling factors of three popular DNN models with 64 GPUs (8 GPUs per

machine) and hierarchical communication. FP32 is the training without GC.

BERT-base is about 1200 GPU hours under ideal linear scaling [147], but in practice,
it will take 2350 GPU hours with 64 GPUs due to the communication time caused by
gradient synchronization. Thus, DNN practitioners have to spend nearly twice the
amount of money on training because the cost linearly increases with the required
GPU hours [30].

When network bandwidth in GPU clouds has not kept pace with the improve-
ments in computation, an alternative is to shrink the communicated tra�c volume
by applying gradient compression.

4.2.2 Gradient Compression

Many gradient compression (GC) algorithms have been proposed in the machine
learning community. Sparsification and Quantization are the two main types of
GC algorithms. Sparsification selects a subset of the original stochastic gradients
for synchronization [192, 27, 115] and it can save up to 99.9% of the gradient ex-
change while maintaining model accuracy [115]. Quantization decreases the precision
of gradients; gradients in single-precision floating-point format (FP32) are mapped
to fewer bits, such as 8 bits [66], 2 bits [220], and even 1 bit [186, 100, 42] to
reduce the communicated tra�c volume by up to 96.9%. There are other types
of gradient compression algorithms, such as low-rank decomposition [207, 211] and
FFT-based compression [212]. Such compression algorithms have been theoretically
proven and/or empirically validated to preserve the convergence of model training
and impose negligible impact on model accuracy when combined with error-feedback
mechanisms [186, 223, 192, 115, 93]. The industry is adopting GC because of its
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great potential to alleviate the communication bottleneck in DDL. The e�orts from
Meta, AWS, and ByteDance to bring GC to mainstream DNN systems have begun
recently [131, 29, 240]. However, the scalability improvement of DDL via GC has
been still poor.

4.3 Challenges of Applying GC to DDL

We first define some key terms.
• Tensor computation is the computation of a tensor during backward propa-

gation.
• Communication time is the wall-clock time for communication. It is denoted

as ·comm.
• Communication overhead is the communication time that cannot overlap

with the tensor computation of any tensors. It is denoted as ocomm.
• Compression time is the wall-clock time to perform compression and decom-

pression operations on devices, e.g., GPUs or CPUs. It is denoted as ·comp

• Compression overhead is the compression time that cannot overlap with
either tensor computation or communication of any tensors. It is denoted as ocomp.

Although GC can reduce ·comm, its compression overheads can dramatically dilute
the benefits gained from the reduced communication time. To demonstrate this, we
apply a popular sparsification algorithm, DGC [115], to the aforementioned GPT2
training and a representative 1-bit quantization algorithm, EFSignSGD [100], to
BERT-base training. The compression rate of DGC is 1%, i.e., only 1% of gradi-
ents are exchanged during synchronization. Tensors are compressed with GPUs [38]
or CPUs [240] in separate experiments. Compression with GPUs is typically faster
than compression with CPUs [38], but it competes for the GPU resources with train-
ing [26]. As shown in Table 4.1, GC only achieves up to 20% training speedup, which
is on par with the findings in prior works [227, 38, 26]. In fact, GC can harm perfor-
mance in some situations. To illustrate, we apply DGC with 1% compression rate to
the training of LSTM [129] on 64 V100 GPUs with PCIe 3.0 ◊16 as the intra-machine
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Figure 4.2 : A DDL example with di�erent compression strategies. (a) is the baseline;

(b) reduces the iteration time, but it is not optimal; (c) and (d) harm the performance;

(e) is our solution and achieves optimal performance. The communication and compression

overheads depend on the interactions among tensors. The decompression operations are

omitted.

network and 25Gbps inter-machine Ethernet.� As listed in Table 4.1, GC slows down
training by up to 9%.

In the following, we will explain the root reasons why it is challenging to obtain
large benefits from GC for DDL.

�NVLink 2.0 gives every GPU in total 1.2Tbps GPU-GPU bandwidth, but PCIe 3.0 ◊16 only
provides ≥100Gbps bandwidth [94]. PCIe-only GPU machines are common in GPU clusters that
have 25Gbps Ethernet [94, 6, 80, 169].
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4.3.1 Root Reasons of the Challenges

The choice of compression strategies determines the iteration time of compression-
enabled DDL. Figure 4.2 is an example that shows the timelines of tensor computa-
tion, communication, and compression of DDL with di�erent compression strategies.
Figures 4.2(a) is the baseline without GC and it illustrates the tensor computation
time (blue boxes) and communication time (green boxes) of all tensors, i.e., T0, T1,
and T2. Figure 4.2(b) compresses T2 with GPUs and it reduces the iteration time.
Figures 4.2(c) and (d) compress the three tensors with GPUs and CPUs, respectively,
but unfortunately, they both harm the performance of DDL. Figures 4.2(e) shows the
optimal compression strategy with Espresso.

It is challenging to find the optimal compression strategy. Applying GC to DDL
is essentially to reduce the communication overheads at the cost of the compression
overheads. The optimal compression strategy maximizes the di�erence between the
reduced communication overheads and the incurred compression overheads. There
are three root reasons for the challenges.
Reason #1. It is hard to quantify the communication and compression overheads
because of the intricate interactions among tensors.
Communication may or may not overlap with tensor computation. The
overlapping times of di�erent tensors vary. For example, in Figure 4.2(a), T0’s ocomm is
zero because its communication is fully overlapped with tensor computation, but T2’s
ocomm is its communication time because it has no overlap with tensor computation.
Moreover, the overlapping time of one tensor can vary under di�erent compression
strategies. For example, in Figure 4.2(a), T1’s communication partially overlaps
with T2’s tensor computation. However, in Figure 4.2(c), after compression, T1’s
communication can completely overlap with T2’s tensor computation. Furthermore,
in Figure 4.2(d), T1’s communication has no overlap with the computation of other
tensors. Hence, it is di�cult to quantify the communication overhead of each tensor.
Compression may or may not overlap with tensor computation and com-
munication. How much ·comp can be overlapped highly depends on the strategy. For
instance, in Figure 4.2(b), T2’s GPU compression fully overlaps with T1’s communi-
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Figure 4.3 : An indivisible scheme. Tj
i is the tensor Ti on Node j. Each node retrieves

tensors from other nodes.

cation. In Figure 4.2(d), T1’s CPU compression partially overlaps with T2’s tensor
computation. In Figure 4.2(c), the three GPU compressions are fully exposed. Hence,
it is di�cult to quantify the compression overhead.
Only considering ·comm and ·comp for the decision of compression strategies
can harm the performance. Figure 4.2(c) maximizes the di�erence between the
reduced communication time and the compression time by compressing the three ten-
sors. However, because GPU compression competes for compute resources with tensor
computation, it delays training and prolongs the iteration time instead. Hence, we
must consider ocomm and ocomp to determine compression strategies for compression-
enabled DDL.
Reason #2. It is hard to choose the right communication schemes for compressed
tensors because of Reason #1.
There are two types of communication schemes for compressed tensors:
indivisible schemes and divisible schemes. We first consider the case that there are
N machines in DDL and each machine has a single GPU. An indivisible scheme
has only one communication operation, as shown in Figure 4.3. Once a tensor is
compressed, each node (e.g., GPU or CPU) broadcasts its compressed tensor to other
nodes. After communication, each node decompresses these compressed tensors and
aggregates them. In contrast, a divisible scheme has two communication operations,
as shown in Figure 4.4. Tensors are first compressed and partitioned into n parts,
where 1 Æ n Æ N . The jth node receives the jth part from other nodes. It then
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from other nodes, it decompresses and aggregates them. It then compresses the aggregated

tensor and obtains T̂ij for the second communication op.

performs decompression, aggregation, and the second compression operation.† After
that, it broadcasts the compressed tensor to other nodes. After communication, each
node decompresses these compressed tensors and aggregates them.
It is hard to decide between indivisible and divisible schemes for GC. Com-
pared to indivisible schemes, divisible schemes have lower communication time and
higher compression time due to the two compression and decompression operations.
As shown in Figures 4.5(a), GC with a divisible scheme outperforms GC with an in-
divisible scheme. However, in Figure 4.5(b), T0’s communication overlaps with T1’s
tensor computation and an indivisible scheme outperforms a divisible scheme for GC.
Thus, the decision of communication schemes depends on tensor interactions.
Reason #3. It is hard to determine whether to apply GC to intra- or inter-machine
communication or both to alleviate communication bottleneck because of Reasons #1
and #2.
DDL can involve both intra- and inter-machine communications. We now
consider the case that there are N machines and each machine has k GPU, where
k > 1, as shown in Figure 4.1. It has intra- and inter-machine communications, and
both can become the performance bottleneck.

†In some cases it can skip these three operations to begin the next communication directly.
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Figure 4.5 : (a) and (b) show that the choice of communication schemes depends on the

interactions among tensors. Only T0 is compressed. (c) and (d) show that the decision

to apply GC to inter-machine communication alone or to both intra- and inter-machine

communications also depends on the interactions among tensors. Tintra
i and Tinter

i are Ti’s

intra- and inter-machine communications.

Whether to apply GC to intra- or inter-machine communication or both
depends on the interactions among tensors. If a tensor is only compressed
for inter-machine communication, intra-machine communication can still be a perfor-
mance issue. Figure 4.5(c) shows that applying GC to intra-machine communication
can further reduce the iteration time. However, if T1 has a longer computation time,
it can overlap more time with T0’s communication, as shown in Figure 4.5(d). In this
case, applying GC to both intra- and inter-machine communications leads to worse
performance than applying it to inter-machine communication alone.
This decision also depends on the chosen communication schemes. Because
both intra- and inter-machine communications need to choose from indivisible or
divisible schemes, the di�culties in determining the right schemes make the decision
of the compression choices even harder.

4.3.2 Research Questions

In light of the three root reasons, there are two research questions to answer for
applying GC to DDL.
Question #1: how to express any possible compression strategies and in-
teractions among tensors for DDL regardless of di�erent distributions of
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computation and communication time of tensors in di�erent DNN mod-
els, di�erent intra- and inter-machine bandwidth, and di�erent GC algo-
rithms?

Applying GC to a tensor must answer the following fundamental questions: Does
it need compression? If so, what type of compute resources to use for its compression?
After compression, what communication schemes should the compressed tensor use?
If it has multiple communication phases, where to compress and decompress this ten-
sor? The search space is huge when holistically considering these decisions. Moreover,
there are typically a large number of tensors in a DNN model and the compression de-
cisions of one tensor can impact the choices of other tensors because of their intricate
interactions. The compression strategy determines the interactions among tensors,
which determine the training throughput of compression-enabled DDL. Therefore, it
is crucial to express any strategies and the corresponding interactions among tensors
to avoid missing the opportunity to maximize the training throughput.
Question #2: how to analyze the interactions among tensor computation,
communication, and compression, as well as the di�erent performance
trade-o�s of GPUs and CPUs for GC, to determine a near-optimal com-
pression strategy for DDL and to do so quickly?

It is important to derive the training timeline, as shown in Figure 4.2 and Fig-
ure 4.5, to analyze the interactions for a given compression strategy and its e�ect
on training throughput because the timeline reveals the iteration time. Even if all
compression strategies are at hand, the time complexity to derive their timelines and
find the optimal strategy is exponential (§4.7.1). The searching time can be much
longer than the training time, which is unacceptable. Moreover, the optimal strategy
is specific to each situation depending on the DNN model, intra- and inter-machine
bandwidth, GC algorithm, etc., and thus cannot be reused across situations. A suc-
cessful solution to this question must develop new insights on the interactions among
tensors and the di�erent performance trade-o�s with di�erent types of compute re-
sources for GC that can eliminate suboptimal strategies from consideration.
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Figure 4.6 : Espresso Overview.

4.4 Espresso Overview

To maximize the training throughput of compression-enabled DDL, the core idea of
Espresso is to select a near-optimal compression strategy from an extremely large
search space with the following two techniques.
A decision tree abstraction to describe any compression options of any ten-
sors as well as empirical models for the time of tensor computation, com-
munication, and compression to express any compression strategies and
interactions among tensors. The abstraction can express any type of compute re-
sources for compression, communication schemes, and di�erent choices to apply GC
to intra- and inter-machine communications. It can also serve as the building block
to describe any compression strategies of a compression-enabled DDL. The empirical
models enable Espresso to derive the timeline of tensor computation, communica-
tion, and compression of all tensors, and thus their intricate interactions with any
compression strategy.
An algorithm for selecting a near-optimal compression strategy with four
properties. The algorithm 1) rules out tensors that certainly bring no benefits to
DDL with GC based on the analysis of interactions among tensors; 2) uses a pri-
oritization method for applying GC to tensors to maximize the benefits with the
minimum number of tensors for compression; 3) determines the compression options
with the compression and communication overheads based on the analysis of interac-
tions, rather than with the wall-clock time; and 4) finds a provably optimal solution
to o�oad compression from GPUs to CPUs.

The input of Espresso is three configuration files for the information of the DNN
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2, and the other three decision tasks are for Dimension 3. The options of Dimension 4 are

illustrated in Figure 4.8.

model, the GC, and the training system setting, as illustrated in Figure 4.6. The
model information contains the tensor sizes and their tensor computation time. Espresso
implements a GC library and the GC information specifies the GC algorithm and the
compression ratio. The training system information gives the number of GPU ma-
chines, the number of GPUs in each machine, and the network bandwidth for both
intra- and inter-machine communications. Espresso takes the three types of informa-
tion to construct the empirical models. Based on the decision tree abstraction and
the empirical models, Espresso selects a near-optimal compression strategy o�ine for
the training job with the decision algorithm. After that, it applies the compression
strategy to the DDL framework to execute the compression option for each tensor at
run-time whenever their gradients are ready for communication.

4.5 The Decision Tree Abstraction

4.5.1 The dimensions of the search space

There are four dimensions that Espresso must consider to describe the search space
of compression options for each tensor. The decision tasks for these dimensions are
shown in Figure 4.7.
Dimension 1: compression or no compression. Because GC can incur non-
negligible compression time and even harm performance, there is no need to compress
all tensors. Espresso must determine the set of tensors that should be compressed to
maximize the benefits of GC.
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Routines Uncompressed tensors Compressed tensors

Indivisible schemes Allreduce Allgather

Divisible schemes
Reduce-scatter/Allgather
Reduce/Broadcast

Alltoall/Allgather
Gather/Broadcast

Table 4.2 : The collective routines for synchronization.

Dimension 2: GPU or CPU for compression. Both GPUs and CPUs can be
used for GC to minimize the compression overhead. Espresso must determine the set
of tensors in a DNN model for GPU and CPU compression, respectively. Task Comp
and Task Decomp, as listed in Table 4.3, are the action tasks to decide between GPUs
and CPUs for compression and decompression operations, respectively.
Dimension 3: the communication schemes. Compressed tensors cannot use
Allreduce for synchronization because their aggregation operations are not associa-
tive [26, 38, 227]. Both indivisible and divisible communication schemes can be used,
while each can have more than one choice of collective routines, i.e., one collective
communication operation or an operation pair. Table 4.2 lists the common collective
routines used in DDL for GC [199, 3, 112]. Because tensors can be communicated
without GC, Table 4.2 lists the collective routines for uncompressed tensors as well.
We distinguish the two communication operations in a divisible scheme as its first and
second steps. In addition, flat and hierarchical communications lead to a di�erent
number of communication phases for gradient synchronization. Therefore, this di-
mension requires Espresso to consider three sub-dimensions: flat or hierarchical com-
munication, indivisible or divisible schemes, and specific collective routines for each
communication phase. The decision tasks of the three sub-dimensions are shown in
Figure 4.7 as flat comm?, divisible scheme?, and which comm?. Because both uncom-
pressed and compressed tensors have indivisible and divisible schemes, and division
schemes have two collective operations, which comm? then has six action tasks, as
listed in Table 4.3.
Dimension 4: the compression choice. It determines where to perform com-
pression and decompression operations. For flat communication, it has two commu-
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Action Tasks Description Search space

Comp Compression operation {CPU, GPU}
Decomp Decompression operation {CPU, GPU}
Comm Indivisible scheme for UT {Allreduce}
Comm1 The first step of a DS for UT {Reduce-scatter, Reduce}
Comm2 The second step of a DS for UT {Allgather, Broadcast}
Commcomp Indivisible scheme for CT {Allgather}
Comm1comp The first step of a DS for CT {Alltoall, Gather}
Comm2comp The second step of a DS for CT {Allgather, Broadcast}

Table 4.3 : The eight action tasks. UT denotes uncompressed tensors, CT denotes com-

pressed tensors, and DS denotes divisible schemes.

nication patterns because it can choose from an indivisible or a divisible scheme. For
hierarchical communication, it can choose from a divisible or an indivisible scheme
for its inter-machine communication. Although it can also choose from a division
scheme or two indivisible schemes for its two intra-machine communications, the
former is better than the latter due to the less amount of tra�c volume. There-
fore, Espresso only considers division schemes for intra-machine communications in
hierarchical communication. Tensors can be compressed as long as they need com-
munication and compressed tensors can be decompressed after any communication
operation. All the options for this dimension, i.e., the possible positions of Task Comp
and Task Decomp in each communication pattern, are illustrated in Figure 4.8.

4.5.2 Constructing the tree

A compression option is a series of decision tasks that determine all the communica-
tion and compression operations of a tensor for its synchronization. These operations
have orders and dependencies. There are eight action tasks (as listed in Table 4.3),
but not all of them can have direct connections, i.e., a task is performed right after
another. The valid connections of action tasks are omitted due to space limitations.
Tree construction. Based on the four dimensions and the valid connections of
the eight action tasks, Espresso can express any possible compression options of any
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tensor with a decision tree, as shown in Figure 4.8. Because the choices of GPUs or
CPUs for Task Comp and Task Decomp do not impact communication tasks, we use
one arrow to represent their two choices for simplicity.

There are three pruning rules to construct the tree. The first rule is that the
following action tasks of an action task must be its valid connections. The second
rule is that the communication tasks must match the correct steps. For example,
Comm1 and Comm1comp are only valid as the first steps of divisible schemes. The
third rule is that the choices of communication tasks in the first and second steps
must pair. For example, if Comm1 is Alltoall, then Comm2 in this divisible scheme
must be Allgather. Each path from Start to End is a valid compression option. The
red crosses in Figure 4.8 are the invalid paths ruled out by these pruning rules.

There are five sub-trees illustrated in Figure 4.8 to abstract parts of the tree. Sub-
tree T1 and T2 describe the process of the second intra-machine step with the input
tensor uncompressed and compressed, respectively. Sub-tree T3 and T4 describe the
process of inter-machine communication plus the second intra-machine step with the
input tensor uncompressed and compressed, respectively. Sub-tree T5 describes the
process of the second inter-machine step plus the second intra-machine step with the
input tensor uncompressed.
Expressiveness and extensibility. Because all the valid connections between deci-
sion tasks have been considered, this decision tree abstraction can cover any possible
compression options. It is easy for Espresso to extend the search space by con-
sidering new communication schemes for GC [172, 74] and other types of compute
resources [97, 208]. In addition, it allows users to manually add constraints to prune
the decision tree to rule out undesirable compression options for their applications.
For example, users can limit the number of compression operations for each tensor to
avoid the accuracy loss of training models.
Compression strategies. Let T = {Ti} denote the set of tensors in a DNN model
and the number of tensors in T is |T | = N . C is the set of possible compression
options. S = {cj} is a compression strategy for the DNN model, where cj œ C is the
compression option for tensor Tj.
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Figure 4.8 : The decision tree abstraction for the compression options. Each diamond in

the tree is a decision task.

4.6 Empirical interactions among tensors

The decision tree abstraction can express any compression strategies, but it is in-
capable of describing the intricate interactions among tensors, which determine the
choice of compression strategies for di�erent DDL training jobs. To describe the
interactions, Espresso proposes di�erent methods to empirically model the time of
tensor computation, communication, and compression, respectively.
Tensor computation. Espresso needs the computation time of each tensor. It col-
lects execution traces of DNN training jobs without GC for 100 iterations to capture
the starting and ending time of the computation of each tensor during backward prop-
agation. Espresso then averages the computation time. It also collects information
on tensor sizes.
Communication time. Espresso needs the communication time of tensors with
and without GC. Given a tensor, Espresso predicts its communication time with
di�erent communication schemes and network bandwidth. The cost models follow
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the model analysis in the literature [199, 148]. These communication models account
for di�erent tensor sizes, communication schemes, the number of machines and GPUs,
and network bandwidth.
Compression time. Espresso also predicts the compression time of tensors with
di�erent sizes and di�erent types of compute resources. Based on the information
collected from execution traces, it can have all the possible tensor sizes as the input of
compression and decompression operations. For any GC algorithm, Espresso profiles
the computational time of these operations on GPUs and CPUs, respectively. It runs
compression and decompression operations with di�erent tensor sizes 100 times and
then averages the results.
Empirical measurement. Espresso requires the applied GC algorithm to have de-
terministic compression time given a tensor size and deterministic compression ratio.
To the best of our knowledge, all existing GC algorithms satisfy these requirements.
It models the tensor computation for each DNN training job without GC and models
the compression time for each GC algorithm. The communication time is independent
of the used DNN model and the applied GC algorithm. We observe that both the
measured tensor computation time and the compression time remain almost constant
across runs [234, 194]. The normalized standard deviation of the measurements is
less than 5%.
Expressing interactions. Given these empirical models and a compression strat-
egy, Espresso can derive the timeline of tensor computation, communication, and
compression of all tensors in a DNN model. Several timeline examples are shown in
Figure 4.2. It can obtain the overlapping time of tensors and thus their interactions
based on the timeline.

In the next section, we will introduce how Espresso exploits the timeline and
analyzes the interactions among tensors to obtain a near-optimal compression strategy
for compression-enabled DDL.
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Figure 4.9 : (a) shows that tensors communicated before bubbles need no compression.

T1 and T2 have the same size. In (b), T1 is compressed and a new bubble is formed. In

(c), T2 is compressed and it reduces more iteration time than compressing T1.

4.7 Espresso’s Decision Algorithm

4.7.1 The optimization problem

We define the optimization problem as follows to search for the optimal compression
strategy for a DDL training job.

Problem 4.1. Given a DDL training job and a compression algorithm, how to max-
imize its training throughput with an optimal compression strategy?

Let F (S) be the iteration time with compression strategy S. The objective is to
minimize F (S) with the optimal compression strategy. The di�culty of the problem
results from the overlapping time among tensor computation, communication, and
compression. Given a compression strategy, Espresso can obtain the overlapping
time of each tensor with other tensors. However, both CPU and GPU compression
delay communications and change the overlapping time accordingly. Naively, we can
enumerate possible combinations to find the optimal solution. This is not acceptable
because the time complexity is O(|C|N), where N could be a few hundred and |C| is
4341 based on the decision tree abstraction in Figure 4.8.
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Figure 4.10 : The benefit ratio of

GPU compression.
Figure 4.11 : Number of tensors

with the same sizes.

4.7.2 Espresso’s GPU compression

To quickly determine a near-optimal compression strategy for DDL, Espresso first
considers GPU resources for GC and then o�oads compression to CPUs to minimize
the contention with tensor computation. There are three properties for the design of
Espresso’s GPU compression decision algorithm.
Property #1. The communication timeline of a DNN model can have bubbles,
i.e., the gaps between communications of adjacent tensors. In Figure 4.9(a), there
is a bubble between the communications of T0 and T1 because T1 is not ready for
communication when T0’s communication completes. There is no benefit to compress-
ing tensors communicated before bubbles because reducing their communication time
only widens the gaps, rather than shifts communications of tensors after bubbles to an
earlier time. Compressing these tensors even harms the performance of DDL because
of the resource contentions with tensor computation. We observe that half of the ten-
sors are communicated before bubbles in the training of LSTM with 8 NVLink-based
GPU machines in a 100Gbps network. Moreover, compressing particular tensors can
also lead to new bubbles being formed due to the reduced communication time. For
example, Figure 4.9(b) shows that a new bubble appears when T2 is compressed.
Therefore, Espresso rules out uncompressed tensors communicated before bubbles for
GC whenever the bubbles appear.
Property #2. There are two insights for the compression order of tensors. The
first one is that compressing larger tensors can bring more benefits to DDL because
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GC incurs a constant overhead to launch GPU kernels for compression [215, 187].
Figure 4.10 shows the ratio of the reduced communication time to the incurred com-
pression time with 64 GPUs and NVLink. The ratio increases with tensor sizes and
it indicates that GPU compression is more e�cient for larger tensors. The second
one is that compressing tensors closer to the output layer, i.e., the last layer during
backward propagation, can bring more benefits. For example, in Figure 4.9(c), T1

and T2 have the same size. Compressing T2 can reduce more iteration time than
compression T1 for two reasons: 1) T2’s compression overlaps more with communi-
cation and has no contention with tensor computation, and 2) compressing T2 can
reduce more communication overhead because its communication overlaps less with
tensor computation. Based on these two insights, Espresso applies GC to tensors in
the descending order of their sizes, and prioritizes tensors closer to the output layer
when they have the same size.
Property #3. Espresso considers the communication and compression overheads to
determine the compression options. As discussed in Section 4.3.1, only considering
the communication and compression time for the decisions can harm the performance
because they can overlap with other operations. Given a tensor, Espresso enumerates
the possible compression options and expresses the corresponding interactions among
tensors. It then chooses the one which minimizes the iteration time as the compression
option.

Algorithm 4.1 shows Espresso’s GPU compression decision algorithm to deter-
mine the compression option of each tensor in a DNN model. It first sorts and
groups tensors with Lines 2-3 (Property #2) and then rules out uncompressed ten-
sors communicated before bubbles with Remove() (Property #1). Given a tensor
Tidx, GetBestOption() enumerates the possible GPU compression options for this
tensor and keeps the options of other tensors unchanged (Lines 16-20). Then there
are |Cgpu| + 1 strategy candidates (one of them is no compression). Espresso can
derive the iteration time of each candidate with the empirical models introduced in
Section 4.6. Line 21 accounts for the interactions among tensors and selects the best
candidate with the minimum iteration time (Property #3). After determining the



78

Algorithm 4.1 Espresso with GPU compression
Input: S is a compression strategy and S[i] is the compression option for Ti. It is initialized with

no compression for all tensors. Cgpu is the set of compression options with GPUs only. Gmi

is a group of tensors with size mi.
Output: S

38 Function Main():

39 sort all tensors in descending order of their sizes and group them based on their sizes to have
G = {Gm1 , Gm2 , · · · , Gmn}, where m1 > · · · > mn

40 sort tensors in each group of G in ascending order of their distances to the output layer of the
DNN model

41 Remove(S, G)
42 for i Ω 1 to n do

43 foreach Tj œ Gmi do

// S is updated after GetBestOption()

44 S = GetBestOption(S, j)
45 Remove(S, G)

46 end

47 end

48 return S

49 Function Remove(S, G):

50 derive the communication timeline with compression strategy S and detect the communication
bubbles; remove uncompressed tensors from G communicated before bubbles

51 Function GetBestOption(S, idx):

52 candidates = [S]
53 foreach ci œ Cgpu do

54 Si = S.copy()
55 Si[idx] = ci

56 candidates.add(Si)

57 end

// F (S) is the iteration time with S

58 return arg min{F (Sj) | Sj œ candidates}

compression option of one tensor, Espresso checks if new bubbles appear and rules
out uncompressed tensors communicated before them again in Line 8 (Property #1).
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4.7.3 Espresso’s CPU o�oading

Espresso o�oads compression from GPUs to CPUs to further improve the training
throughput of DDL after Algorithm 4.1. Tensors with no compression are ruled out
for CPU o�oading and the set of the left tensors is denoted as Tgpu, which can have
hundreds of tensors. The time complexity with brute force for CPU o�oading is
O(2|Tgpu|). Tensors in Tgpu can have the same compression option, i.e., they take
the same compression choice and communication schemes. Espresso takes a greedy
algorithm to find a provably optimal compression strategy for CPU o�oading based
on an interesting observation.

Lemma 4.1. Suppose G is a set of tensors with the same size and same compres-
sion option from Tgpu. Suppose also q tensors in G must be o�oaded to CPUs for
compression. The best solution is to o�oad the q tensors farthest from the output
layer.

The intuition of Lemma 4.1 is that o�oading tensors to CPUs earlier can overlap
more CPU compression with communication and tensor computation, and thus reduce
the CPU compression overheads. Therefore, if tensors in Tgpu can be grouped like G in
Lemma 4.1, there is no need to evaluate all possible combinations because Lemma 4.1
restricts the choices of tensors for CPU o�oading in each group.
Algorithm 4.2. Espresso first groups Tgpu to have Ggpu = {Ggpu

1 , Ggpu
2 , · · · , Ggpu

d },
where Ggpu

i is a set of tensors with the same size and the same compression option.
The tensors in Ggpu

i are sorted in the descending order of their distances to the output
layer. Denote U = {u1, u2, · · · , ud}, where ui is the number of tensors in Ggpu

i for
CPU o�oading and 0 Æ ui Æ |Ggpu

i |. U is the set of all possible U . For each U œ U ,
Espresso considers a compression strategy that o�oads the compression of the first
ui tensors in Ggpu

i to CPUs, and derives its iteration time. It traverses U to search
for the best U with the minimum iteration time.

Theorem 4.1. Algorithm 4.2 can find the best CPU o�oading solution in O(r(|Ggpu
i |+

1)) given Tgpu.

Proof. We first prove that given a U = {u1, u2, · · · , ud}, the best CPU o�oading is to
o�oad the first ui tensors in Ggpu

i to CPUs. Without loss of generality, we assume in



80

Model Dataset Batch size Model size

VGG16 [190] ImageNet [64] 32 images 528 MB
ResNet101 [87] ImageNet [64] 32 images 170 MB
UGATIT [101] selfie2anime [180] 2 images 2559 MB
BERT-base [67] SQuAD [167] 1024 tokens 420 MB
GPT2 [164] WikiText-2 [130] 80 tokens 475 MB
LSTM [129] WikiText-2 [130] 80 tokens 328 MB

Table 4.4 : Characteristics of the benchmark DNN models.

the best CPU o�oading, the uj o�oaded tensors in Ggpu
j are not the first uj tensors,

which contradicts the conclusion in Lemma 4.1. Then the assumption does not hold.
Because the number of tensors in Ggpu

i is |Ggpu
i |, there are |Ggpu

i | + 1 options for
the number of tensors for CPU o�oading, from 0 tensors to |Ggpu

i | tensors. Therefore,
the number of possible U in U is O(r(|Ggpu

i | + 1)). For each U , its best o�oading
solution is determined. Therefore, Espresso only needs to traverse the r(|Ggpu

i | + 1)
possibilities to find the best CPU o�oading.

4.8 Evaluation

4.8.1 Experimental Setup

Testbeds. Two testbeds are used: 1) 8 GPU machines with NVLink and a 100Gbps
network with TCP/IP, and 2) 8 PCIe-only GPU machines with a 25Gbps network.
Each machine has 8 NVIDIA Tesla V100 GPUs (32 GB GPU memory) and 2 CPUs/48
cores (Intel Xeon 8260 at 2.40GHz). Each machine runs Debian 10 and the software
environment includes CUDA-11.0, PyTorch-1.8.0, BytePS-0.2.5, and NCCL-2.7.8.
Workloads. We use six popular real-world DNN models including three computer
vision (CV) models (VGG16, ResNet101, and UGATIT) and three natural language
processing (NLP) models (BERT-base, GPT2, and LSTM) by following the liter-
ature [94, 74, 183]. We set the batch sizes of these models by also following the
literature [105, 129, 38, 74, 183]. Specifically, the per-GPU batch size is kept con-
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stant as the number of GPUs increases, and the batch sizes are modest because large
batch sizes are known to cause convergence problems [196, 183]. The details of the
models, datasets, and batch sizes are shown in Table 4.4.
Compression algorithms. We use three representative compression algorithms:
Randomk [192] and DGC [115] for sparsification (99% sparsity), and EFSignSGD [100]
for quantization. Error-feedback [100, 115] is applied on both GPU and CPU com-
pression to preserve the model accuracy.
Baselines. We use BytePS [94] as the training baseline without GC (FP32). We use
HiPress [38] and HiTopKComm [188] as the two baselines with GPU compression,
and BytePS-Compress [240] as the baseline with CPU compression. These baselines
explore narrower search spaces in comparison to Espresso.
Performance metrics. We use trained images per second as the performance metric
for CV models and tokens per second for NLP models. We measure the computational
time of Espresso and the training accuracy of DNN models. We also provide the upper
bound on the training throughput of compression-enabled DDL (Upper Bound). This
is obtained by assuming GC has no compression overhead and has no impact on tensor
computation.
Implementation. We implement a GPU compression library shared by HiPress,
HiTopKComm, and Espresso as well as a CPU compression library shared by BytePS-
Compress and Espresso. We also implement a communication library to support
di�erent communication schemes in both intra- and inter-machine communications
shared by all baselines and Espresso. These libraries consist of 5.1K and 3.0K lines of
code in C++ and Python. Espresso’s decision algorithm is implemented with 1.1K
lines of code in Python.

4.8.2 End-to-End Experiments with NVLink-based GPU machines

Figure 4.12 shows the training throughput of three DNN models with Espresso and
baselines. The performance bottleneck is inter-machine communication.

As shown in Figure 4.12a, the compression baselines bring very limited speedups
over FP32 for BERT-base. For example, HiTopKComm and HiPress only outperform
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(a) BERT-base+Randomk (b) GPT2+EFSignSGD (c) UGATIT+DGC

Figure 4.12 : Throughput of DNN models with NVLink-based GPU machines and

100Gbps cross-machine Ethernet.

FP32 by up to 4% and 13%, respectively. It is because there are a large number of
tensors in BERT-base, while none of the baselines consider the interactions among
tensors. Their compression strategies lead to costly compression overheads. Espresso
significantly improves the performance over all baselines. For example, with 64 GPUs,
it outperforms BytePS-Compress, HiTopKComm, and HiPress by 31%, 54%, and
40%, respectively. For GPT2, it outperforms BytePS-Compress and HiPress by 42%
and 33% with 64 GPUs, as shown in Figure 4.12b.

UGATIT is very communication-intensive because of its large model size. When
the number of GPUs is 64, the performance improvement with HiPress and HiTop-
KComm is 86% and 66%, respectively, as shown in Figure 4.12c. BytePS-Compress
even harms the performance by 18% due to the costly computational overhead for
CPU compression. Espresso leverages both GPUs and CPUs for compression. It
outperforms FP32, BytePS-Compress, HiTopKComm, and HiPress by 149%, 205%,
50%, and 35%, respectively. One important observation is that the improvements of
Espresso become larger from 8 GPUs to 64 GPUs. This implies that when DDL scales
out, the computational overhead caused by compression also increases, and Espresso
becomes more beneficial.

4.8.3 Computational time of Espresso

Table 4.5 lists the computational time of Espresso to select compression strategies
for the training of di�erent DNN models with 8 NVLink-based GPU machines (the
results are similar with PCIe-only GPU machines). The time increases with the
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VGG16 ResNet101 UGATIT BERT-base GPT2 LSTM

# of Tensors 32 314 148 207 148 10
Espresso 17ms 179ms 84ms 125ms 99ms 1ms
Brute force > 24h > 24h > 24h > 24h > 24h > 24h

Table 4.5 : The time to select compression strategies. # of tensors is the number of

tensors in DNN models.

VGG16 ResNet101 UGATIT BERT-base GPT2 LSTM

# of Tensors 11 42 32 54 34 5
Espresso 1ms 30ms 12ms 44ms 18ms 1ms
Brute force 1ms > 24h 1.9h > 24h 7.6h 1ms

Table 4.6 : The time to find the best CPU o�oading solutions. # of tensors is the number

of tensors for o�oading.

number of tensors in DNN models, but even for ResNet101 with 314 tensors, the
computational time is still within one iteration time. In contrast, brute force takes
a very long time because it has to traverse all the possibilities. Even though LSTM
only has 10 tensors, the search time is still unacceptable.

Table 4.6 shows the computational time of Espresso to find the best CPU o�oad-
ing solution. After Espresso’s GPU compression decision algorithm, the number of
tensors for CPU o�oading has been significantly reduced. Brute force can quickly
find the best solution for VGG16 and LSTM, but it takes a long time for other models.
Espresso can still quickly find the best solution. For example, there are 54 tensors
in BERT-base for CPU o�oading, but they only have a few di�erent tensor sizes, as
shown in Figure 4.11. Espresso only needs to consider a few thousand choices to find
the best CPU o�oading.

4.8.4 End-to-End Experiments with PCIe-only GPU machines

The performance bottlenecks could be both inter- and intra-machine communications
in this setup. Figure 4.13b shows that the three compression baselines bring almost
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(a) VGG16+Randomk (b) LSTM+EFSignSGD (c) ResNet101+DGC

Figure 4.13 : Throughput of DNN models with PCIe-only GPU machines and 25Gbps

cross-machine Ethernet.

no improvement for LSTM model with GC. For example, HiPress only outperforms
FP32 by up to 2%, and BytePS-Compress even harms the performance by 12% with
64 GPUs. It is because they only compress tensors to reduce inter-machine communi-
cation and cannot e�ectively alleviate the intra-machine communication bottleneck.
Moreover, they also incur costly compression overhead. Espresso compresses tensors
to reduce both inter- and intra-machine communications when necessary and always
has the best performance across all cases. For example, with 64 GPUs, it outperforms
BytePS-Compress, HiTopKComm, and HiPress by 101%, 73%, 77%, respectively. For
VGG16 model with 64 GPUs, the speedups of Espresso over FP32, BytePS-Compress,
and HiPress are 269%, 357%, 55%, respectively.

We observe that ResNet101 is not communication-intensive and it achieves the
scaling factor of 0.70 even with FP32. Figure 4.13c shows applying GC to ResNet101
with the compression baselines harms its performance. HiTopKComm reduces its
training throughput by up to 54% because it compresses all tensors, causing exorbi-
tant compression overhead. HiPress also has high over-compression penalties and it
degrades the performance by 4% with 64 GPUs. In contrast, Espresso outperforms
FP32, BytePS-Compress, and HiPress by up to 20%, 18%, and 24%, respectively.

4.8.5 Espresso’s compression strategies are near-optimal

We have performed experiments for all combinations of GC algorithms (i.e. Ran-
domk, DGC, EFSignSGD), DNN models (i.e. VGG16, ResNet101, UGATIT, BERT-
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(a) NVLink-based machines (b) PCIe-only machines

Figure 4.14 : The performance di�erences between compression frameworks and Upper

Bound with 64 GPUs.

base, GPT2, LSTM), varying the number of GPUs from 8 to 64, over both NVLink
and PCIe, across all schemes (i.e. FP32, HiPress, BytePS-Compress, HiTopKComm,
Espresso). We present a summary of all the results for the 64-GPU scenario. Specif-
ically, we present the cumulative distribution of the performance di�erences of each
scheme from the Upper Bound. Figure 4.14a displays the distributions of perfor-
mance di�erences for all the training with NVLink-based machines and 64 GPUs.
The performance di�erences between Espresso and Upper Bound is always less than
10%. To call out a few specific data points, the performance di�erences for the train-
ing of GPT2 with EFSignSGD, UGATIT with DGC, and BERT-base with Randomk
are only 3%, 5%, and 7%, respectively. Note that the di�erences between Espresso’s
compression strategy and the optimal strategy can be even smaller because Upper
Bound is by definition higher than the training throughput of the optimal strategy.
Figure 4.14b shows the distributions for all the training with PCIe-only machines and
64 GPUs and Espresso similarly outperforms other baselines.

4.8.6 Importance of the Entire Search Space

To evaluate the importance of considering all four dimensions, we cripple one of the
dimensions and then select the compression strategy with the remaining three dimen-
sions. We cripple Dimension 1 with two restricted mechanisms: All compression:
It compresses all tensors. Myopic compression: It does not consider interactions
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(a) Restrict Dim. 1 (b) Restrict Dim. 2

(c) Restrict Dim. 3 (d) Restrict Dim. 4

Figure 4.15 : Considering all four dimensions is always better than considering only three

dimensions.

among tensors when applying GC to tensors. We cripple Dimension 2 with two re-
stricted mechanisms: GPU compression: It only compresses tensors with GPUs.
CPU compression: It only compresses tensors with CPUs. We cripple Dimen-
sion 3 with two restricted mechanisms: Inter Allgather: It compresses tensors
for inter-machine communication and uses Allgather for compressed tensors. Inter
Alltoall: It compresses tensors for inter-machine communication. The communi-
cation scheme is Alltoall/Allgather. We cripple Dimension 4 with Inter Alltoall
and another restricted mechanism Alltoall+Alltoall: It first compresses tensors for
the first intra-machine communication and the communication scheme is Alltoall. It
then decompresses and compresses tensors again for inter-machine communication. It
uses Alltoall/Allgather for inter-machine communication and Allgather for the second
intra-machine communication.



87

(a) BERT (b) ResNet101

Figure 4.16 : Model accuracy of BERT-base (F1 score) and ResNet101 (Top-1 accuracy).

Figure 4.15 shows the scaling factors of VGG16 with 64 GPUs. NVLink-based
GPU machines are used in (a), (b), and (c), and EFSignSGD is used in (d). The
compression strategies determined by Espresso always outperforms the compression
strategies selected from the cripple search space. Moreover, Figure 4.15(c) verifies
that di�erent types of GC algorithms need di�erent communication schemes, and
Figure 4.15(d) verifies that di�erent intra- and inter-machine bandwidth need di�erent
compression choices.

4.8.7 Convergence validation

It has been theoretically proven and empirically validated that GC can preserve the
training accuracy and convergence [186, 223, 192, 115, 93, 74, 38]. In this section,
we rea�rm these conclusions and demonstrate that Espresso can preserve training
accuracy and convergence.

We conduct a test following the methodology in [74] to fine-tune BERT-base for
the question-answering task on SQuAD [167] for two epochs and repeat the exper-
iments ten times. The number of GPUs is 64 on 8 NVLink-based GPU machines.
Figure 4.16a shows that Espresso with DGC can achieve around 1.55◊ speedup over
no compression (i.e. FP32) and it has almost the same F1 score as no compression.
We also train ResNet101 for 120 epochs on ImageNet [64] from scratch and apply EF-
SignSGD to the model training. As shown in Figure 4.16b, the speedup of Espresso
over no compression (i.e. FP32) is 1.23◊. The achieved Top-1 accuracy with Espresso
is 77.10%, which is very close to the no-compression accuracy of 77.18%.
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Chapter 5

Cupcake: A Compression Optimizer for Scalable
and Communication-E�cient Distributed Training

Espresso unleashes the benefits of GC algorithms by finding the near-optimal com-
pression strategy. Like other existing compression-enabled DDL systems [38, 226], it
applies GC algorithms in a layer-wise fashion, i.e., tensor by tensor. We observe that
there is still improvement room to further reduce the compression overhead caused
by this layer-wise fashion due to the fixed overheads to launch and execute kernels
in CUDA [33]. In this chapter, we propose Cupcake, a compression optimizer that
applies GC algorithms in a fusion fashion, i.e., fuse multiple tensors for one compres-
sion operation. Cupcake determines the provably optimal fusion strategy to maximize
training throughput by reducing the amount of communicated data and minimizing
the compression overhead simultaneously.

5.1 Introduction

As discussed in Chapter 4, gradient compression (GC) is a promising approach to
alleviate the communication bottleneck in DDL by significantly reducing the amount
of communicated data. Nonetheless, it is challenging to achieve the desired speedup
when applying GC to DDL jobs [38, 26]. In this chapter, we first analyze the practical
di�culty when applying GC to DDL with the layer-wise fashion, which is the state-
of-the-art approach used in existing compression-enabled DDL systems [38, 226, 214].
The layer-wise fashion compresses tensors one by one when they are ready for com-
munication and it can greatly shorten the communication time for gradient synchro-
nization thanks to the reduced amount of tra�c volume. However, we observed that
the end-to-end training speedups of DDL with the layer-wise compression are only
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modest, and even worse than training without GC in many cases due to the incurred
prohibitive overhead of compression operations [226, 217].

We then propose Cupcake to maximize the training throughput of compression-
enabled DDL by reducing the amount of communicated data and minimizing the
compression overhead simultaneously. Cupcake is a general compression optimizer to
enable GC algorithms to unleash their benefits to accelerate DDL. Essentially, GC
reduces the communication time of DDL at the cost of the compression overheads.
Because of the fixed overheads to launch and execute kernels in CUDA [34], the
compression overhead is non-negligible even for small tensor sizes. Fortunately, we
observe that this overhead remains constant when the tensor size is smaller than a
threshold (e.g., 4 MB in our testbed) and it then linearly increases with the tensor size.
This observation motivates us to fuse multiple tensors for one compression operation.

Fusing tensors for compression leads to a trade-o� between the reduced compres-
sion overhead and the communication overhead, i.e., the communication time that
cannot overlap with computation. Because communication overlaps with computation
in DDL [231, 187, 94, 112], gradient tensors can begin their communications whenever
they are ready in the layer-wise fashion. However, in a fusion fashion, a tensor has to
wait for its following tensors for a unified compression operation and communication
operation. Therefore, fusion can delay communications, shrink the overlapping time,
and thus worsen the iteration time. To address this challenge, Cupcake determines
the provably optimal fusion strategy for applying GC to DDL by balancing the com-
pression overhead and the communication overhead. It can maximize the training
throughput of compression-enabled DDL jobs, regardless of di�erent training models,
GC algorithms, and training system configurations, such as the number of GPUs and
the network bandwidth.

Our evaluations in both computer vision and NLP demonstrate that GC algo-
rithms applied with Cupcake can greatly improve the training throughput of DDL.
Specifically, Cupcake enables GC algorithms to achieve up to 2.03◊ speedup in train-
ing throughput over training without GC, and up to 1.79◊ speedup over the state-
of-the-start solutions that compress tensors in a layer-wise fashion.
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Figure 5.1 : An example of DDL with five tensors for gradient synchronization. (a) is the

strawman in which communications have to wait for the completion of backpropagation.

(b) uses WFBP to overlap communication with backpropagation to reduce the iteration

time. In (c), every tensor is compressed, but it does not reduce the iteration time compared

to (b) due to the compression overheads. Forward propagation and decoding are omitted.

5.2 The Practical Performance of GC with Layer-wise Com-

pression

5.2.1 Overlapping Communication with Computation

Because of the layered structure and a layer-by-layer computation pattern in DNN
models, the wait-free backpropagation mechanism (WFBP) [231, 187, 94, 112, 50] is
widely adopted to overlap communication with computation in DDL. As illustrated in
Figures 5.1(a) and 5.1(b), WFBP can significantly reduce the iteration time compared
to the strawman solution, in which communication cannot begin until the completion
of backpropagation. Existing distributed ML frameworks, such as PyTorch [156],
Tensorflow [25], and Horovod [187], apply GC to DDL in a layer-wise fashion, i.e.,
tensor by tensor, to overlap communication with computation because of WFBP.
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5.2.2 Empirical Measurements

Because applying GC to DDL requires computation resources, it competes for GPU
resources with backpropagation and delays tensor computation, as shown in Fig-
ure 5.1(c). Although GC algorithms can reduce the communication time of DDL, the
incurred compression overheads can dramatically dilute the benefits gained from the
reduced communication time.

To demonstrate, we empirically measure the training throughput of compression-
enabled DDL with several popular GC algorithms, including both sparsification and
quantization. The experiments are conducted on a server equipped with 8 GPUs
(NVIDIA Tesla V100 with 32 GB memory), two 20-core/40-thread processors (In-
tel Xeon Gold 6230 2.1GHz), and PCIe 3.0◊16. GRACE [226] is used to support
compression-enabled DDL and GC algorithms are applied in a layer-wise fashion.
The training model is ResNet50 [87] over CIFAR10 [107] and the batch size is 32.

Two sparsification algorithms, DGC [115] and Rand-k [192], are evaluated and
the gradient sparsity is 99%, i.e., only 1% of gradients are exchanged during synchro-
nization. Two 1-bit quantization algorithms, EFSignSGD [100] and OneBit [186], are
also evaluated.

Figure 5.2a shows the breakdown of the iteration time of the training. The com-
munication overhead refers to the communication time that cannot overlap with back-
propagation and compression of any tensors. FP32 is the training baseline without
GC. We observe that the performance improvement with these GC algorithms is
modest. Some algorithms, such as DGC, EFSignSGD, and OneBit, even surprisingly
lead to a longer iteration time. This observation is on par with the findings in prior
works [226, 183, 113, 84, 26].

5.2.3 The Root Cause of the Poor Performance

When a gradient tensor is ready for synchronization in DDL without compression,
it is communicated and then the aggregated results are used to update the training
model. However, there are two additional operations when applying GC to DDL:
encoding (encode a tensor before communication to reduce the tra�c volume) and
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(a) Breakdown of iteration time (b) Encoding overhead (c) Decoding overhead

Figure 5.2 : The compression overheads with di�erent compression algorithms. The data

in (a) are collected from the training of ResNet50; the data in (b) and (c) are collected from

a microbenchmark. Both encoding and decoding overheads are non-negligible.

decoding (decode the received compressed tensor for model updates) � These two
operations can incur non-negligible computation overhead.

Figure 5.2b and 5.2c display the encoding and decoding latencies with four rep-
resentative GC algorithms, i.e., DGC [115] and Rand-k [192] for sparsification, EF-
SignSGD [100] and Onebit [186] for quantization. Both encoding and decoding laten-
cies are non-negligible, even for tensors with small sizes. For instance, the encoding
latencies of DGC, EFSignSGD, and Onebit are all greater than 0.25 ms, regardless
of the tensor sizes.

DNN models typically have a large number of tensors for gradient synchroniza-
tion [87, 67]. The layer-wise compression invokes encoding and decoding operations
for each tensor and leads to prohibitive compression overheads. We take training
ResNet50 over CIFAR10 with 8 GPUs in our testbed as a concrete example to com-
pare the overall compression overhead against the communication improvement. In
our measurement, the iteration time of the single-GPU training is around 48 ms.
Without any compression, the communication overhead in each iteration is about 56
ms. Both sparsification and 1-bit quantization algorithms can reduce the communi-
cation overhead to less than 10 ms thanks to the much smaller communicated tra�c

�It may require more decoding operations after communication when multiple encoded tensors
are received on each GPU.
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Figure 5.3 : Cupcakefuses multiple tensors for one compression operation and one commu-

nication operation to minimize the iteration time. It is challenging to find the optimal fusion

strategy given a DDL job and a GC algorithm because fusing tensors leads to a trade-o�

between the reduced compression overhead and the overlapping time between communica-

tion and backpropagation.

volume. However, the overall compression overheads of DGC and EFSignSGD are
both larger than 60 ms, which is even higher than the communication overhead in the
baseline. The costly compression overheads result in the poor practical performance
of DDL with GC.

5.2.4 An Opportunity and a Challenge

The compression overhead of GC algorithms with a layer-wise fashion becomes the
new e�ciency bottleneck in DDL. We observe that there are some fixed overheads to
launch and execute kernels in CUDA [34]. Figure 5.2 shows that the encoding and
decoding latencies of GC algorithms keep constant when the tensor size is smaller
than a threshold (e.g., 4 MB in our testbed). They then almost linearly increase
with the tensor sizes. This observation indicates that fusing multiple tensors for one
compression operation can potentially reduce the overall compression overhead and
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thus the iteration time. Suppose there are ten tensors with a size of 128 KB for
gradient synchronization and the encoding latency of DGC for a 128 KB tensor is 0.4
ms. If we can fuse these ten tensors for one encoding operation, the overall encoding
latency is still 0.4 ms, which is significantly lower than the latency incurred by ten
encoding operations for the ten tensors separately.

However, fusing tensors for GC algorithms raises a new challenge: what is the
optimal fusion strategy to minimize the iteration time? There is a trade-o� between
the compression overhead and the communication overhead because fusing tensors to
reduce the compression overhead has to delay communications and thus shrink the
overlapping time between communication and computation (including both backprop-
agation and compression). For example, an extreme case of tensor fusion is applying
a GC algorithm to an entire training model with only one compression operation.
However, in this case, communication cannot begin until the completion of backprop-
agation, resulting in suboptimal communication overhead, as shown in Figure 5.3(a).
Another extreme case is to apply the layer-wise fashion to compress tensors one by
one to minimize the communication overhead, but it leads to prohibitive compression
overheads, as discussed in Section 5.2.3.

There are numerous fusion strategies to apply a GC algorithm to a DDL job and
three strategies are illustrated in Figure 5.3. It is challenging to find the optimal
one because it depends on many factors, such as the applied GC algorithms, the
tensor size and the computation time of the DNN model, the number of GPUs, and
network bandwidth. We must jointly consider backpropagation, compression, and
communication overheads to search for the optimal strategy to maximize the training
throughput of compression-enabled DDL jobs.

5.3 Cupcake

In this section, we first formulate the tensor fusion problem given a DDL job and
a GC algorithm. We then design an algorithm to provably find the optimal fusion
strategy to minimize the iteration time.
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5.3.1 Problem Formulation

The core idea of Cupcakeis to fuse multiple tensors for one compression operation,
instead of applying GC to DDL in a layer-wise fashion. It can reduce the compres-
sion overhead and meanwhile overlap communication with computation to reduce the
communication overhead.

Given a training model with N tensors, the set of tensors is T = {T0, . . . , TN≠1}.
For example, Figure 5.1 and Figure 5.3 display a training model with five tenors.
Cupcakepartitions the model into y groups and determines a fusion strategy Xy =
{x0, . . . , xy≠1}, where xi is a group of consecutive tensors that are compressed and
communicated together. Cupcakeperforms an encoding operation and a communi-
cation operation for each tensor group in each iteration. After encoding, the fused
tensor xi is communicated and synchronized. After communication, the encoded xi

is decoded and aggregated to update the training model.
Let A denote the computation time for forward propagation in an iteration and

B(Ti) denote the computation time of Ti in backpropagation. xi is the total tensor size
of xi. h(xi) is the time to compress xi and g(xi) is the corresponding communication
time. P (Xy) is the total overlapping time, i.e., the total communication time that
overlaps with the compression and backpropagation of any tensors. Given a fusion
strategy Xy = {x0, . . . , xy≠1}, the iteration time is

f(Xy) = A +
N≠1ÿ

b=0
B(Ti) +

y≠1ÿ

i=0
h(xi) +

y≠1ÿ

i=0
g(xi) ≠ P (Xy). (5.1)

A and B(Ti) can be profiled o�ine for a training model and they are constant
across iterations [234, 194]. Following the literature [199, 3, 74, 172], we model the
communication time of xi as g(xi) = –g + —gxi, where –g is the latency (or startup
time) per tensor and —g is the transfer time per byte after encoding. Based on the
measurement in Figure 5.2, we model the compression time of xi as h(xi) = –h +—hxi,
where –h is the fixed overhead to launch and execute kernels in CUDA and —g is the
compression time per byte. Cupcakemeasures –g, —g, –h, and —h o�ine based on the
system configurations, such as the GPU computation capacity, the number of GPUs,
and the network bandwidth.
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Given a fusion strategy, Cupcakecan calculate its iteration time by deriving the
timelines of its backpropagation, compression, and communication [214], as shown in
Figure 5.3. Unfortunately, it is still challenging to formulate f(Xy) due to P (Xy),
which is determined by the strategy and the intricate interactions among backprop-
agation, compression, and communications of all the tensors.

Instead of deriving the expression of P (Xy), we formulate the tensor fusion problem
in a recursive way to minimize the iteration time of a DDL job with a given GC
algorithm. Let F (M, i) be the iteration time of the optimal fusion strategy from Ti

to TN≠1, given the fusion strategy for tensors from T0 to Ti≠1 is represented by M .
We then have the following recurrence relation

Y
_]

_[

F ({}, 0) = min
1ÆiÆN

F ({fuse(0, i ≠ 1)}, i), (5.2)

F (M, i) = min
i+1ÆjÆN

F (M + fuse(i, j ≠ 1), j), (5.3)

where fuse(i, j) fuses tensors from Ti to Tj as one group. Cupcakefirst considers
the form of x0, i.e., fuse(0, i ≠ 1), where 1 Æ i Æ N , in Equation (2). It then
recursively computes F (M, i) to find the optimal fusion strategy for the entire model.
For simplicity, let h(i, j) denote the compression time of a fused tensor from Ti to Tj,
g(i, j) denote its communication time, and B(i, j) denote its backpropagation time.

5.3.2 The Optimal Fusion Strategy

For any tensor in a DNN model except T0, it can be either fused into the current group
or form a new one. Therefore, there are 2N≠1 possible fusion strategies. It indicates
that the time complexity to address the tensor fusion problem with brute force is
exponential. Because DNN models typically have hundreds of tensors, it is impractical
to enumerate all possible strategies. Moreover, the optimal strategy is specific to each
situation because di�erent DDL jobs have di�erent characteristics, such as di�erent
tensor numbers, di�erent tensor sizes, and di�erent system configurations.

We first introduce two pruning techniques based on two insights to enable Cup-
caketo find the optimal fusion strategy e�ciently.
Insight #1: It is not necessary for Cupcaketo examine all the N cases
for the formation of x0. When there are too many tensors in x0, it can delay
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(a) Cupcake prunes a strategy if its optimistic outcome is greater than the
current optimal iteration time when determining x0.

(b) Cupcake prunes strategies in which x1 fuses tensors from Ti to Tj , where
j < j

ú, when x0 is determined.

Figure 5.4 : Examples of the two pruning techniques.

communication and lead to a long iteration time. Given a case of x0, we can calculate
the optimistic outcome of the iteration time as follows.

F ({fuse(0, i ≠ 1)}, i) Ø

max{B(0, N ≠ 1) + h(0, i ≠ 1) + h(i, N ≠ 1),

B(0, i ≠ 1) + h(0, i ≠ 1) + g(0, i ≠ 1) + g(i, N ≠ 1)}.

(5.4)

The optimistic outcome considers two cases. The first case is that there is no commu-
nication overhead. The second case is that except tensors in x0, all the other tensors
are fused as one group for compression and communication, and x1’s communication
begins right after the completion of x0’s communication, as shown in Figure 5.4a. The
compression time of x1 is perfectly overlapped with communication. If the optimistic
outcome of a case is already greater than the iteration time of the best fusion strategy
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Figure 5.5 : A general case for the two pruning techniques given M , which is the set of

fused tensors from T0 to Tk≠1. M.comp and M.delay can be derived based on the timelines

of backpropagation, compression, and communication of tensors in M .

found so far, then this case, i.e., the recursive computation for F ({fuse(0, i ≠ 1)}, i),
can be pruned.
Insight #2: It is safe to fuse more tensors in a group based on the progress
of communication of the previous group. Suppose x0 is fused from T0 to Ti≠1.
We apply Equation (5.3) recursively to enumerate cases for x1, which is formed by
fusing tensors from Ti to Tj. The backpropagation time and the compression time of
x1 can overlap with x0’s communication, as shown in Figure 5.4b. The smallest j can
be calculated with

j
ú = arg maxj{B(i, j) + h(i, j) Æ g(0, i ≠ 1)}. (5.5)

Note that the less number of tensors in x1 means more tensors in x2 and DDL has
to communicate more tensors after the completion of backpropagation. Fusing from
Ti to Tj, where j < jú, is no better than fusing from Ti to Tjú because it shrinks the
overlapping time between communication and computation. Therefore, Cupcakecan
prune the strategies in which x1 fuses tensors from Ti to Tj where j < jú and only
examine j Ø jú.
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Algorithm 5.1 Optimal Fusion Strategy
Input: N is the number of tensors in a DNN model. global_opt_fuse = {}. global_opt_time = Œ
Output: The optimal fusion strategy global_opt_fuse.

59 Function Main():

60 for k Ω 1 to N do

61 FindOptFusion({fuse(0, k-1)}, k)
62 end

63 return global_opt_fuse

64 Function FindOptFusion(M, k):

65 local_opt_fuse Ω {fuse(k, N ≠ 1)}
// f() is defined in Equation (5.1)

66 local_opt_time Ω f(M + fuse(k, N ≠ 1))
67 jú Ω k

68 for i Ω k to N ≠ 1 do

69 if B(k, i) + h(k, i) Æ M.delay then

70 jú Ω i

71 else

72 break
73 end

74 end

75 M.comp = B(0, k ≠ 1) +
q

xœM

h(x)

76 for i Ω jú
to N ≠ 1 do

77 base Ω B(k, N ≠ 1) + h(k, i) + h(i + 1, N ≠ 1)
78 cases Ω max{B(k, i) + h(k, i), M.delay} + g(k, i) + g(i + 1, N ≠ 1)
79 optim_outcome Ω M.comp + max(base, cases)
80 if optim_outcome > global_opt_time then

81 continue
82 end

83 first_fuse Ω fuse(k, i)
84 rest_fuse Ω FindOptFusion(M + first_fuse, i + 1)
85 cur_fuse Ω first_fuse + rest_fuse

86 cur_fuse_time = f(M + cur_fuse)
87 if cur_fuse_time < local_opt_fuse_time then

88 local_opt_fuse Ω cur_fuse

89 local_opt_time Ω cur_fuse_time

90 end

91 if cur_fuse_time < global_opt_time then

92 global_opt_fuse Ω M + cur_fuse

93 global_opt_time Ω cur_fuse_time

94 end

95 end

96 return local_opt_fuse

Fusion algorithm. Based on the two insights of examining possible fusion strategies,
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we design Algorithm 5.1 that finds the optimal fusion strategy given a DDL job and
a GC algorithm. Main() checks the N cases of x0 and it invokes FindOptFusion() to
recursively search for the optimal strategy (lines 1-5). FindOptFusion() takes two
inputs M and k: M = {x0, . . . , xa≠1}, which is the fusion strategy for tensors from
T0 to Tk≠1, and Tk is the first tensor to be fused for xa.

Algorithm 5.1 uses global_opt_fuse to store the best fusion strategy found so far
and local_opt_fuse to store the local best strategy from Tk to TN≠1. Given M , it first
applies the second insight to fuse the first group beginning from Tk (Lines 9-16). The
example illustrated in Figure 5.4b only considers the case that xa≠1’s communication
begins right after its compression, but it is likely that its communication can be
delayed by communication of its previous group. The algorithm replaces g(0, i≠1) in
Expression (5.5) with M.delay, which denotes the di�erence between the completion
time of compression and communication of xa≠1. The two cases of M.delay are
illustrated in Figure 5.5. We also denote M.comp as the time duration from the
beginning of backpropagation to the completion of xa≠1’s compression, as shown in
Figure 5.5. Given M , both M.delay and M.comp can be calculated based on the
timelines of backpropagation, compression, and communication, regardless of the
strategy to fuse the remaining tensors.

Algorithm 5.1 finds jú based on M.delay (Lines 9-16) to skip the enumerations
of tensors from Tk to Tjú≠1. It then uses the first insight to calculate the optimistic
outcome (Lines 19-21). Similarly, the example shown in Figure 5.4a only consid-
ers the case that xa’s communication begins right after its compression. However,
it is also likely that its communication can be delayed by xa≠1’s communication, as
shown in Communication case 2 in Figure 5.5. The algorithm considers both cases
and calculates the optimistic outcome. Algorithm 5.1 prunes the search if the opti-
mistic outcome is already greater than the iteration time of the current best strategy.
Suppose xa is fused from Tk to Ti, FindOptFusion() recursively applies itself to
find the local optimal fusion strategy from Ti+1 to TN≠1 (Lines 25-28). It updates
local_opt_fuse and global_opt_fuse if the current strategy is better (Lines 29-36).

In practice, Algorithm 5.1 can use a heuristic to bootstrap global_opt_fuse with
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a relatively good fusion strategy. For example, it can partition a DNN model into
multiple groups (e.g., two groups) with the same number of tensors.
Time complexity. The complexity of Algorithm 5.1 is O(2N) because it has to enu-
merate all fusion strategies in the worst case. Fortunately, the two pruning techniques
can prune most of them and enable Cupcaketo find the optimal one quickly, as we
will show in Section 5.4.3.

Theorem 5.1. Algorithm 5.1 finds the optimal fusion strategy that minimizes the
iteration time of a DDL job given a GC algorithm.

Proof. Algorithm 5.1 recursively invokes FindOptFusion(M, k). Let n = N ≠ k,
which is the number of tensors this function considers. We use induction on n to
prove that the function finds the optimal fusion strategy from Tk to TN≠1 given M .

Base case. When n = 1, the function only needs to examine one tensor and thus
only one fusion strategy, which is the optimal one.

Inductive step. Assume that for any 1 Æ n Æ p, FindOptFusion(M, k) returns the
optimal fusion strategy from Tk to TN≠1 given M . Consider n = p + 1. Algorithm 5.1
divides the problem into p + 1 cases, where case i (0 Æ i Æ p) fuses the first group
from Tk to Tk+i.

We first consider case i where 0 Æ i Æ p ≠ 1. The function invokes
FindOptFusion(M + fuse(k, k + i), k + i + 1), in which the number of tensors con-
sidered is p ≠ i Æ p. Hence, it outputs the optimal strategy for case i based on the
assumption. We then consider case i = p and the first group is fused from Tk to TN≠1.
This is the only fusion strategy and thus the optimal one. Because these cases are
exclusive and cover the entire search space, Algorithm 5.1 finds the optimal fusion
strategy for n = p + 1 by searching for the optimal one from these cases.

Algorithm 5.1 applies two pruning techniques to quickly find the optimal fusion
strategy. The first one prunes the cases whose lower bounds are no better than the
optimal found so far and it has no impact on the optimality. The second one prunes
the cases whose first groups are fused from Tk to Tj, where j < jú. Because they
cannot advance communication to an earlier point than fusing from Tk to Tjú , pruning
these cases does not a�ect the optimality.
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(a) ResNet50 (b) ResNet101 (c) BERT-base

Figure 5.6 : The scaling factors of three DNN models running on a server with 8 GPUs

connected by PCIe 3.0 ◊16.

(a) ResNet50 (b) ResNet101 (c) BERT-base

Figure 5.7 : The scaling factors of three DNN models running on 64 GPUs in 8 servers

connected by a 25Gbps network.

5.4 Evaluation

In this section, we will first show the performance improvement of Cupcakefor GC al-
gorithms with sparsification and quantization. We then evaluate Time-to-Accuracy to
demonstrate that Cupcakecan preserve the accuracy of these applied GC algorithms.
At last, we show that Cupcakecan find the optimal fusion strategy quickly.
Setup. Two testbed setups are used for the evaluations. The first setup is the same as
that described in Section 5.2. The server has 8 GPUs and they are connected by PCIe
3.0 ◊16. The second setup has 8 GPU machines connected to a 25Gbps network.
Each machine has 8 NVIDIA Tesla V100 GPUs (32 GB GPU memory) connected
by NVLink and 48-core/96-thread processors (Intel Xeon 8260 at 2.40GHz). The
server has an Ubuntu 18.04.4 LTS system and the software environment includes
PyTorch-1.8.1, Horovod-0.22.1, CUDA-11.1, and NCCL-2.9.9.
Workloads. We validate the performance of Cupcakeon two types of machine learn-
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ing tasks: computer vision and natural language processing (NLP). The models
include ResNet50 over CIFAR10 [107] and ResNet101 [87] over ImageNet-1K [64];
BERT-base [67] over SQuAD [167]. These models are widely used as standard bench-
marks to evaluate the scalability of DDL. The batch sizes for ResNet50 and ResNet101
are 32 and for BERT-base are 1024 samples.
Compression algorithms. We use four representative GC algorithms: Rand-
k [192] and DGC [115] for sparsification with 99% sparsity, and EFSignSGD [100]
and OneBit [186] for quantization. Error-feedback [100, 115] is applied to GC algo-
rithms to preserve the model accuracy.
Baselines. We use Horovod [187] as the training baseline without GC (FP32). We
use GRACE [226] and HiPress [38] as the two layer-wise baselines for applying GC
to DDL. GRACE applies GC to all tensors in a model and HiPress only compresses
tensors greater than a threshold, which is determined by the tensor size, network
bandwidth, and compression overhead.
Metrics. Suppose the training speed with n GPUs is Tn. The scaling factor [234] is
defined as Tn

nT1
. We use the scaling factor, Top-1 accuracy, and F1 score as evaluation

metrics. The results for scaling factors are reported with an average of 100 iterations.
We also report the standard deviation using the error bar because the training speed
varies at times.
Allgather for communications. Allreduce is used for communications in
FP32 [187, 156]. Existing frameworks’ implementation of Allreduce requires tensors
to be aligned and support element-wise aggregations. However, compressed tensors
typically do not satisfy these requirements. For example, compressed tensors using
Rand-k have di�erent indices for selected elements, while those using Onebit cannot
support addition. In contrast, the implementation of Allgather [199] has no such
restrictions. It gathers tensors from all GPUs and allows for customized aggrega-
tion operations for compressed tensors. Therefore, we chose to use Allgather in our
implementation to communicate compressed tensors [226, 214].
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5.4.1 Training Speed Improvement

Figure 5.6 shows the scaling factors of the three DNN models running on a server with
8 GPUs connected by PCIe 3.0 ◊16. The four compression algorithms are applied
with Cupcakeand the two layer-wise baselines, respectively.

We can see from Figure 5.6 that applying GC in a layer-wise fashion can even
harm the performance of DDL due to the costly compression overhead. The scaling
factors of both ResNet50 and ResNet101 with GRACE compression are lower than
those without any compression in most cases. HiPress outperforms GRACE because
it avoids encoding small tensors and incurs less compression overhead. However, its
improvement in the training throughput is just modest compared to training without
GC. Applying Rand-k, DGC, and EFSignSGD to the training of BERT with HiPress
can improve the training speed, but it still harms the training performance when the
GC algorithm is OneBit.

In contrast, Cupcakesignificantly improves the training speed of DDL with GC al-
gorithms for the three DNN models compared to FP32. For the training of ResNet50,
it outperforms FP32 by up to 72% (apply Rand-k). It also outperforms GRACE and
HiPress by up to 130% and 64% (apply OneBit), respectively. For ResNet101, Cup-
cakeoutperforms FP32, GRACE, and HiPress by up to 39%, 70%, and 37%, respec-
tively. For BERT-base, it outperforms FP32, GRACE, and HiPress by up to 65%,
106%, and 61%, respectively.

Figure 5.7 shows the scaling factors of the three DNN models running on 8 servers
(each has 8 GPUs) connected by a 25Gbps network. Because intra-machine commu-
nications are supported by NVLink, which can provide every GPU in total 1.2Tbps
GPU-GPU bandwidth [94], the performance bottleneck is inter-machine communi-
cations. Therefore, tensors are not compressed for intra-machine communications
and GC is applied for inter-machine communications only. Figure 5.7 shows that the
speedups of Cupcakeover FP32 are up to 93%, 46%, and 103% for the training of
ResNet50, ResNet101, and BERT-base, respectively. It also outperforms HiPress by
up to 79%, 37%, and 58% for the training of the three models, respectively.
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(a) ResNet50 (b) ResNet101 (c) BERT-base

Figure 5.8 : Cupcakeachieves almost the same model accuracy as no compression. DGC

and EFSignSGD are applied to the training of ResNet50 over CIFAR10 and ResNet101 over

Imagenet-1K, respectively. Both Rand-k and DGC are applied to the training of BERT-

base over SQuAD.

5.4.2 Time-to-Accuracy Improvement

Because HiPress is always better than GRACE in terms of the training throughput,
we compare Cupcaketo HiPress in this section. We train ResNet50 over CIFAR10
until convergence on a server with 8 GPUs connected by PCIe 3.0 ◊16. The applied
GC algorithm is DGC. As shown in Figures 5.8a, Cupcakecan achieve around 1.68◊
speedup over no compression (i.e. FP32), and 1.30◊ speedup over HiPress. The
achieved Top-1 accuracy with Cupcakeis 93.2% (with HiPress is 93.1%), which is
very close to the no-compression accuracy of 93.6%. We also train ResNet101 for 120
epochs on ImageNet-1K from scratch and apply EFSignSGD to the model training.
Figure 5.8b shows that Cupcakeoutperforms no compression and HiPress by 1.32◊
and 1.25◊, respectively. The achieved Top-1 accuracy with Cupcake, HiPress, and
no compression is 76.7%, 76.6%, and 77.1%, respectively. In addition, we conduct
a test following the methodology in [74] to fine-tune BERT-base for the question-
answering task on SQuAD [167] for two epochs and repeat the experiments ten times.
Figure 5.8c shows that Cupcakewith DGC can achieve around 1.65◊ speedup over
no compression and it has almost the same F1 score as no compression.
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ResNet50 ResNet101 BERT-base

# of tensors 161 314 207
Algorithm 5.1 2.8 s 6.6 s 4.2 s
Only Pruning 1 15 s 68 s 32 s
Only Pruning 2 2.2 h 9.4 h > 24 h
No Pruning > 24 h > 24 h > 24 h

Table 5.1 : Running time of Algorithm 5.1.

5.4.3 E�ectiveness of Cupcake

Computation time. We first measure the computation time of Algorithm 5.1 with
the two pruning techniques. Note that the number of tensors in a DNN model, their
sizes, and the computation time of backpropagation are measured in advance. The
cost model of the communication time is determined by the network bandwidth. We
also profile the encoding and decoding overheads of a GC algorithm, as shown in
Figure 5.2, to model the compression time.

Table 5.1 shows that it only takes several seconds for Algorithm 5.1 to find the
optimal fusion strategy for the three DNN models when training them on a server
with 8 GPUs connected by PCIe 3.0 ◊16. For example, the computation time is only
a few seconds even for ResNet101 which has 314 tensors. However, the search cannot
finish after running for 24 hours without the two pruning techniques, i.e., searching
for the optimal strategy with brute force.
Compared to strawman solutions. We also compare Cupcake with the following
two strawman solutions for tensor fusion.
• Bucket Fusion [112, 187]. It stores tensors in a bu�er and fuses tensors in the

bu�er when their total size exceeds a threshold. We set di�erent thresholds from
2 MB to 64 MB and use the best performance as its performance.

• Evenly Split. It evenly splits consecutive tensors into multiple groups for fusion
and each group has the same number of tensors. We set the number of groups
from 2 to 32 and use the best performance as its performance.
We apply DGC with three fusion strategies, Cupcake, Bucket Fusion, and Evenly

Split, to three DNN models when training them on a server with 8 GPUs. Figure 5.9
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Figure 5.9 : The scaling factors of three DNN models running on a server with 8 GPUs.

The GC algorithm is DGC.

displays their scaling factors. Both Bucket Fusion and Evenly Split outperform the
layer-wise baselines thanks to the reduced compression overheads. Cupcake outper-
forms them by up to 1.12◊ and 1.18◊, respectively. Cupcake searches for the optimal
fusion strategy from the whole search space. We observe that the number of tensors
and the size of the fused tensor vary a lot across groups in the optimal strategy for
the three evaluated DNN models. However, the two strawman solutions limit the
search space and constrain that each group has to have the same number of tensors
or the same fused tensor size, leading to suboptimal fusion strategies.
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Chapter 6

Gemini: Fast Failure Recovery in Distributed
Training with In-Memory Checkpoints

As discussed in Chapter 2, e�ective communication in both the data plane and the
management plane holds a pivotal role in the endeavor to scale up DDL. In Chapters
3-5, we present systems that are designed to optimize data-plane communications to
enhance the scalability of DDL. In this chapter, our focus shifts towards optimizing
management-plane communications. Recall that DDL, particularly in the context
of large language models, can involve a substantial number of GPUs and span sev-
eral months for completion. Hundreds of software or hardware failures might occur
during the training process. Unfortunately, existing solutions have fallen short of ef-
ficiently handling training failures, resulting in significant GPU resource wastage and
dramatically slowing down the training progress. In response to these challenges, we
introduce Gemini that enables fast failure recovery in the management plane for DDL
and reduces the recovery overhead resulting from each failure from hours to minutes.

6.1 Introduction

Deep learning models have shown their ability to perform outstandingly on a spectrum
of tasks including computer vision [87, 196], natural language processing [67, 204], etc.
Recently, language models like ChatGPT [14] and GPT-4 [158] have drawn significant
attention from both academia and industry with unprecedented performance as well
as model size. PaLM [58] has 540 billion parameters, which is a 360◊ increase over
GPT-2 [164] that was released three years earlier. This trend is still expediting
because continued improvements have been observed from scaling the model sizes [58].
To train such a large model, failures are inevitably frequent because of the number
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of involved accelerators (e.g., tens of thousands of GPUs) and the length of training
time (in months). For example, OPT model training reports a failure frequency of
twice a day [20]. The situation will get worse as the model size keeps growing.

Existing solutions cannot handle training failures e�ciently. According to the
report from OPT-175B training [233], about 178,000 GPU hours were wasted due
to various training failures. As the failure frequency increases with the scale of the
training, failures can dramatically slow down the training progress (up to 43% [121]).
One major reason for such a significant overhead caused by failures is the ine�ciency
of checkpointing. Existing solutions rely on naïve checkpointing [71, 139, 5], which
periodically saves the model states to a remote persistent storage system, for fail-
ure recovery, i.e., the process to fetch the latest checkpoint and resume training to
the states right before a failure. Intuitively, a higher network bandwidth leads to
shorter checkpoint retrieval times, and a higher checkpoint frequency reduces train-
ing progress loss in case of failures. However, existing solutions are restricted by the
low bandwidth to remote persistent storage, resulting in significant failure recovery
costs, i.e., taking up to tens of minutes to retrieve the checkpoint captured a few hours
ago to resume the training. It is worth noting that the state-of-the-art large model
training adopts a synchronized method to guarantee model quality [233, 144, 228],
making it infeasible to only drop the training progress of the failed machine/device
upon a failure to proceed without waiting for the failure recovery. Instead, it requires
all machines/devices to roll back to the same checkpoint for failure recovery.

To reduce the prohibitively large failure recovery overhead, we present Gemini,
a distributed training system that leverages the high bandwidth of CPU memory to
achieve fast failure recovery in large model training via prompt checkpoint retrieval
(in seconds) and high checkpoint frequency (ideally checkpoint for every training it-
eration). Gemini incorporates a hierarchical storage consisting of local CPU memory,
remote CPU memory, and remote persistent storage, to store checkpoints. It leverages
CPU memory to store checkpoints for failure recovery, and meanwhile stores check-
points for other purposes in remote persistent storage. Gemini takes advantage of the
optimized network connection for large-scale training to checkpoint model states in
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the CPU memory of the compute cluster, which allows for a much higher frequency
than existing solutions. It guarantees a 100% failure recovery and always fetches the
available checkpoint from the fastest storage to minimize the recovery cost.

Checkpointing to CPU memory raises two questions that Gemini needs to ad-
dress. First, how to maximize the probability of a successful failure recovery from
CPU memory? The availability of checkpoints in CPU memory is not guaranteed
upon a failure as the corresponding machines could be down. When the checkpoints
are unavailable, in the worst case, the system has to resort to checkpoints stored in re-
mote persistent storage, leading to significant failure recovery costs. The success rate
of recovering a failure from checkpoints stored in CPU memory largely depends on
how the checkpoints are placed among the CPU memory in di�erent host machines.
Gemini stores redundant checkpoints and proposes a placement strategy that maxi-
mizes the probability. We have proved that the strategy is optimal when the number
of machines participating in training is divisible by the number of replicas and the
strategy remains near-optimal with established bounds in other cases. Second, how
to minimize the interference of checkpoint tra�c with model training? Checkpointing
model states to remote CPU memory shares the network resource with the regular
training. Naïvely checkpointing to CPU memory will easily delay the training tra�c
which impacts the training throughput. Gemini designs a deliberate communica-
tion scheduling algorithm for interleaving these two types of tra�c to minimize the
interference on training throughput.

Gemini makes no assumptions about the underlying parallelism strategy [112, 166,
142, 189, 239] of the training system. It targets static and synchronous training with
fixed computation resources, following the common practice for large model training
in industrial settings [5, 214, 71, 58, 191, 216]. Elastic training [151, 224, 123] and
asynchronous training [138, 232] are beyond the scope of this work. Gemini also makes
no assumptions about the accelerator. In this chapter, we conducted experiments
on NVIDIA GPUs, but the technique applies to other accelerators such as AWS
Trainium [4], which remains for future work.

To sum up, this chapter makes the following contributions:
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Failure recovery in large model training

Time

Failure

The wasted time

Checkpoint
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Iteration
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Figure 6.1 : An illustration of how failure recovery uses checkpoints. The checkpoint

frequency f to the remote persistent storage is every 100 iterations (same as BLOOM [5]).

A failure occurs at iteration 310 when the third checkpoint is incomplete. The failure

recovery rolls back the model states to iteration 200 by retrieving the second checkpoint.

• To our knowledge, Gemini is the first system that takes advantage of CPU memory
checkpointing to achieve e�cient failure recovery in large model training.

• We design a provably near-optimal checkpoint placement strategy that maximizes
the probability of a successful failure recovery from CPU memory.

• We propose a communication scheduling algorithm that pipelines checkpoint tra�c
across host machines to minimize its interference with model training.

We build Gemini atop DeepSpeed [170] and evaluate it with ZeRO-3 [166] on various
large deep learning models using both Amazon EC2 p4d.24xlarge (NVIDIA A100
GPUs) and p3dn.24xlarge (NVIDIA V100 GPUs) instances. Compared to existing
solutions [139, 5], Gemini reduces the checkpoint retrieval time by up to 250◊ and im-
proves the checkpoint frequency by up to 8◊. Hence, Gemini achieves a faster failure
recovery by more than 13◊ without incurring overhead on training throughput.

6.2 Motivation

6.2.1 Failure Recovery in Model Training

We have noticed a significant waste of computation resources caused by large model
training failures. The model states, i.e., the learnable parameters and the optimizer
states, are resided in GPU memory during training. When a failure occurs, the model
states must be rolled back to previous states by retrieving the latest checkpoint for
failure recovery. For example in Figure 6.1, a failure occurs at iteration 310, but
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the latest available checkpoint is at iteration 200. After the failure recovery, the
training progress from iteration 200 to 310 is lost. Additionally, retrieving the latest
checkpoint incurs overhead during the failure recovery process.

We define wasted time as the sum of the time spent on the lost training process
before a failure and the time for retrieving the latest checkpoint during a failure
recovery. As illustrated in Figure 6.1, the wasted time describes the timespan of a
paused training process due to a failure, i.e., the time of computation resource wasted
in terms of the training process. It is determined by three factors:
• checkpoint time, which is the time to finish a checkpoint of model states. We

denote checkpoint time as tckpt in Figure 6.1.
• checkpoint frequency, which determines how frequently the training system check-

points model states to storage system. We denote checkpoint frequency as f .
• retrieval time, which is the time to retrieve the latest complete checkpoint�. We

denote retrieval time as trtvl, shown in Figure 6.1.
In this section, we use the average wasted time as the main metric to evaluate

the performance of a checkpointing solution, because a failure may occur at any time
and the wasted time varies. The best case is that a failure occurs right after the
completion of a checkpoint and the wasted time is tcpkt + trtvl. The worst case is that
a failure occurs right before the completion of a checkpoint and the wasted time is
tcpkt + 1/f + trtvl. Assuming failures are evenly distributed between two consecutive
checkpoints, the average wasted time (denoted as Twasted) can be expressed as

Twasted = tckpt + 1
2f

+ trtvl. (6.1)

In addition, we have the following constraint:

1/f Ø max(tckpt, Titer), (6.2)

where Titer is the iteration time. One checkpoint cannot start until its previous
checkpoint completes, and there is no need to have multiple checkpoints within one
iteration as the model states are updated once every iteration.

�We exclude the overheads to fix failures and replace machines in the wasted time because they
are not caused by checkpoints.



113

To reduce the wasted time, it is critical to reduce checkpoint time tckpt to enable a
higher checkpoint frequency f , and the optimal frequency f is every iteration 1/Titer.

6.2.2 Limitations of Existing Solutions

Existing solutions fail to achieve high checkpoint frequency for failure recovery due
to the remote persistent storage system usage. They checkpoint the model states
at a particular frequency and persist checkpoints in a remote persistent storage sys-
tem [139, 184]. In common practice, existing solutions checkpoint model states at a
low frequency, e.g., every three hours in BLOOM training [5], to reduce the required
storage capacity. A few hours of computation resources are wasted when a failure
occurs. Considering thousands of GPUs involved in training and hundreds of failures
experienced during training, the total computation resource waste is significant, and
the training time slowdown can be up to 43% [121]. It is infeasible to arbitrarily in-
crease the checkpoint frequency because checkpoint frequency is bottlenecked by the
bandwidth of the remote persistent storage [71]. For example, it takes 42 minutes to
checkpoint the model states of MT-NLG [191] to the remote persistent storage when
the bandwidth is 20Gbps. According to Equation (6.1), the average wasted time for
failure recovery is 105 minutes, which makes the training system less e�cient.

6.2.3 The Opportunity and Challenges

Minimizing the wasted time for failure recovery is crucial for enhancing the system
e�ciency of distributed training, especially large model training. We next explore
the opportunity to achieve this goal and discuss the identified challenges.
Checkpointing to CPU memory. The low bandwidth severely restricts the fre-
quency of checkpointing to remote persistent storage. We observe that the CPU
memory in GPU machines is su�cient to store a few checkpoints. Table 6.1 com-
pares the GPU and CPU memory in popular GPU instances in public clouds for
large model training, demonstrating that the CPU memory is much larger than the
GPU memory. This observation provides a great opportunity for Gemini to store
the latest checkpoint in CPU memory. Gemini can leverage the network connecting



114

Instance type Cloud GPU GPU memory CPU memory
p3dn.24xlarge [21] AWS 8 V100 8 ◊ 32 GB 768 GB
p4d.24xlarge [22] AWS 8 A100 8 ◊ 40 GB 1152 GB
ND40rs_v2 [17] Azure 8 V100 8 ◊ 32 GB 672 GB
ND96asr_v4 [18] Azure 8 A100 8 ◊ 40 GB 900 GB
n1-8-v100 [16] GCP 8 V100 8 ◊ 32 GB 624 GB
a2-highgpu-8g [16] GCP 8 A100 8 ◊ 40 GB 640 GB
DGX A100 [19] NVIDIA 8 A100 8 ◊ 80 GB 2 TB

Table 6.1 : The CPU memory size is much larger than the GPU memory size in one GPU

machine provided in public GPU clouds.

GPU instances for checkpointing. Because this network is optimized for training, its
bandwidth is much higher than the bandwidth of the remote persistent storage [22].
Therefore, Gemini can achieve a much higher checkpoint frequency for failure recovery
than existing solutions.

One concern is that the CPU memory size is insu�cient to store the history of
checkpoints for purposes other than failure recovery, such as transfer learning [155]
and model debugging [52, 71]. To address this concern, Gemini decouples checkpoints
for di�erent purposes. It only stores the checkpoints for failure recovery in CPU
memory, while storing checkpoints for other purposes in remote persistent storage.
Challenges. Checkpointing to CPU memory allows for a much higher frequency
than existing solutions, thereby reducing the wasted time. However, this approach
also presents new challenges.

How to maximize the probability of failure recovery from checkpoints
stored in CPU memory? Although checkpointing to CPU memory enables a high
frequency, the availability of checkpoints in CPU memory cannot be guaranteed when
failures occur. In the cases of unavailable checkpoints in CPU memory, we have to fall
back to using the low-frequency checkpoints stored in the remote persistent storage
for failure recovery, causing significant wasted time.

How to minimize the interference of checkpoint tra�c with model train-
ing? When checkpointing to CPU memory, communication tra�c for training and
checkpointing have to share the same network. Without careful design, checkpoint
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Figure 6.2 : The system architecture of Gemini. Gemini consists of checkpoint creation

and failure recovery modules. In the checkpoint creation module, each worker agent controls

checkpoint destinations and schedules checkpoint communications. In the failure recovery

module, worker agents update machines’ health statuses in the distributed key-value store.

The root agent periodically checks the health statuses in the distributed key-value store,

interacts with the cloud operator to replace failed machines as needed, and guides the

checkpoint retrieval for failure recovery.

tra�c can interfere with training tra�c and harm training throughput. The inter-
ference overhead is non-negligible because it negatively impacts every iteration. This
can significantly diminish the benefits gained from checkpointing to CPU memory.

6.3 Gemini Overview

We propose Gemini, which achieves a high checkpoint frequency, even every iteration,
to optimize the failure recovery overhead in distributed training. It minimizes the
wasted time by checkpointing to CPU memory and addresses the two aforementioned
challenges. Figure 6.2 illustrates Gemini’s architecture that consists of two modules:
1) a checkpoint creation module (Section 6.3.1); and 2) a failure recovery module
(Section 6.3.2). The two modules cooperate to resume training once a failure occurs.

6.3.1 Checkpoint Creation Module

Gemini uses a decoupled and hierarchical storage design for checkpointing. In Gem-
ini, the checkpoint creation module stores the checkpoints of each GPU machine to
di�erent destinations, including local CPU memory, remote CPU memory on other
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machines, and remote persistent storage. The checkpoint creation module stores the
checkpoints for failure recovery in local and remote CPU memory. These checkpoints
are managed by Gemini’s checkpoint creation module and are transparent to users.
On the other hand, checkpoints for other purposes, such as transfer learning [155]
and model debugging [71], are stored in remote persistent storage and managed by
users. During failure recovery, checkpoints are first retrieved from local CPU memory
and then remote CPU memory if unavailable in local CPU memory. If both local and
remote CPU memory checkpoints are unavailable, Gemini retrieves checkpoints from
remote persistent storage.

As illustrated in Figure 6.2, each training machine has a Gemini worker agent
for checkpointing to CPU memory. Where to place checkpoints for failure recovery
on CPU memory determines the failure recovery capacity. To maximize the proba-
bility of failure recovery from checkpoints in CPU memory, we propose a provably
near-optimal checkpoint placement strategy for checkpointing to CPU memory (Sec-
tion 6.4). Gemini determines the checkpoint placement strategy when training is
initialized. During runtime, the Gemini worker agent on each machine communicates
checkpoints from GPU memory to CPU memory based on the placement strategy and
checkpoint frequency. To minimize or even eliminate the interference of checkpoint
tra�c with model training, we propose a tra�c scheduling algorithm that pipelines
checkpoint tra�c and interleaves it with training tra�c (Section 6.5).

6.3.2 Failure Recovery Module

Gemini’s failure recovery module has four components: a group of Gemini worker
agents, a Gemini root agent, a distributed key-value store, and a cloud operator.
Worker agents monitor their own machine’s health status and update it in the dis-
tributed key-value store [78, 73, 15]. The unique root agent runs on a regular training
machine with a worker agent. The training machine with the root agent running is
called the root machine. The root agent periodically checks the health status of each
training machine from the distributed key-value store. The cloud operator manages
the training computation resources and replaces failed machines with healthy ones as
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Figure 6.3 : Illustrations of the mixed checkpoint placement strategy.

needed.
If the root agent detects a training machine failure, the root agent takes corre-

sponding actions based on failure types (Section 6.6). For example, when a training
machine replacement is needed, the root agent interacts with the cloud operator to
complete the machine replacement and guides the replaced machine where to retrieve
its checkpoints.

Worker agents also periodically check the root machine’s health status in the dis-
tributed key-value store. A root machine failure is detected when the root machine’s
health status has not been updated for a predefined time threshold. In the case of
a root machine failure, one alive worker machine is promoted as the root machine,
and one new worker machine is initialized to replace the failed one. Gemini relies on
the leader election method in the distributed key-value store [149, 108] for the root
machine selection.

6.4 Checkpoint Placement to CPU Memory

To reduce the wasted time, Gemini writes checkpoints to CPU memory to achieve high
frequencies. However, the checkpoints stored in CPU memory may become invalid
for recovery when some GPU machines are disconnected from training. In such cases,
Gemini has to fetch from remote persistent storage to perform recovery, leading to
significant wasted time. Adding more checkpoint replicas reduces the possibility of
unavailable checkpoints in CPU memory, but it also increases CPU memory usage and
network bandwidth competition with training tra�c. In addition to the number of
replicas, our research has revealed that the checkpoint placement strategy, i.e., where
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Algorithm 6.1 Mixed checkpoint placement strategy
Input: N is the number of GPU machines and m is the number of checkpoint replicas.
Output: The group list G and the strategy.

97 Function placement_strategy(N , m):

98 G = []
99 g = ÂN/mÊ

100 for i Ω 0 to g ≠ 1 do

101 G = []
102 for j Ω 1 to m do

103 G.add(m ◊ i + j)
104 end

105 G.add(G)

106 end

107 strategy = ”group”
108 if N is not divisible by m then

109 strategy = ”mixed”
// add remaining machines to the last group

110 for j Ω g ◊ m + 1 to N do

111 G[≠1].add(j)
112 end

113 end

114 return G, strategy

to store the checkpoint replicas, also a�ects the possibility, as shown in Figure 6.3.
Hence, we aim to identify the best placement strategy that maximizes the probability
of failure recovery from CPU memory, given a specific number of replicas. This
problem can be formulated as follows.

Problem 6.1. Given N machines and m checkpoint replicas, what is the optimal
placement strategy to distribute the m replicas among the N machines to maximize
the probability of failure recovery from CPU memory?

We design a mixed placement strategy described in Algorithm 6.1 to solve Prob-
lem 6.1. The inputs of the algorithm are the number of machines N , and the number
of replicas m. The output is the machine group assignment and the specific strategy.
If the number of machines N is divisible by the number of replicas m, we will apply a
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group placement strategy for all machines participating in training. The N machines
are divided into N/m groups and each group has m machines. During training, each
machine broadcasts its checkpoints to the m ≠ 1 machines in the same group. It also
writes one checkpoint to its own CPU memory as a local replica, which is one tier in
Gemini’s hierarchical checkpoint solution. Otherwise, when N is not divisible by m,
we split the N machines into ÂN/mÊ groups and apply the group placement strategy
to the first ÂN/mÊ ≠ 1 groups. For the last N ≠ m(ÂN/mÊ ≠ 1) machines, we apply
a ring placement strategy, in which each machine writes the checkpoints from GPU
memory to its local CPU memory and also sends checkpoints to the consecutive m≠1
machines in the ring from its left hand. Regardless of the placement strategy em-
ployed, Gemini copies the checkpoint from GPU memory to the local CPU memory
and treats it as a local replica. It has two advantages: 1) it can mitigate the network
bandwidth contention with training tra�c; and 2) for certain failure types, e.g., soft-
ware failures (refer to Section 6.6.1), Gemini can directly resume training from the
local replica to accelerate checkpoint retrieval. We pivot the group placement strategy
because it exhibits a greater likelihood of recovering from CPU memory compared to
the ring placement strategy with the same number of replicas. We also have Theorem
6.1 for the performance of the mixed placement strategy.

Theorem 6.1. To address Problem 6.1 for checkpoint placement:
1. When N is divisible by m, the mixed placement strategy (equals group placement

strategy) is the optimal placement strategy.
2. When N is not divisible by m, the mixed placement strategy minimizes the check-

point communication time. Its failure recovery probability from CPU memory
is near-optimal and the gap is bounded by (2m ≠ 3)/

1
N
m

2
.

Proof. We first introduce two observations for checkpoint placements. (1) The opti-
mal strategy requires m machines to store the m checkpoint copies of each machine
to maximize the recovery probability. If there are only mÕ machines to store the m

copies, where mÕ < m, it is equivalent to the strategy with only mÕ copies for recover-
ing failures from CPU memory. (2) The optimal strategy requires Machine i to store
one copy of its own machine checkpoint to minimize the checkpointing time. If so,
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each machine only needs to send out m ≠ 1 checkpoint copies. Otherwise, it has to
send out m copies and leads to a higher checkpointing time.

The checkpointing communication time with Group strategy is minimized because
each machine sends out and receives m ≠ 1 checkpoint copies, no matter whether N

is dividable by m or not. We next analyze the probability that Gemini can recover
failures from CPU memory.

Suppose there are k machines disconnected at the same time. Gemini can certainly
recover failures from CPU memory when k < m because there are m copies in m

instances. We mainly discuss the case that k = m here because the failure rate with
k + 1 machines disconnected simultaneously is much lower than with k machines
disconnected simultaneously in practice.

For Machine i, we denote the set of machines that store its machine checkpoints
as si and it has

1
N≠1
m≠1

2
possible combinations because one checkpoint replica is stored

locally. Then a strategy can be expressed as S = {s1, s2, . . . , sN}. Because it is
possible that si = sj when i ”= j, we define S Õ = unique(S) and n = |S Õ|. The union
of these n sets in S Õ must cover all the N machines because each machine stores a
local checkpoint.

We denote the set of the m disconnected machines as sd and it has
1

N
m

2
possible

combinations. Note that k = m in our analysis. Gemini cannot recover training from
CPU memory when sd is an element in S Õ. If so, all the m copies of a machine check-
point get lost and the model checkpoints stored in CPU memory become incomplete
and invalid for failure recovery. The probability that sd is an element in S Õ is n/

1
N
m

2
,

which linearly increases with n.
Probability upper bound. The upper bound of the probability that training
can be recovered from checkpoints stored in CPU memory is 1 ≠ ÁN

mË/
1

N
m

2
because

n Ø ÁN/mË. If n < ÁN/mË, the size of the union of the n sets is at most nm < N .
It contradicts the requirement that the n sets must cover the N machines.
When N is divisible by m. Group placement strategy can achieve the upper
bound. Machines in the same group have the same set of machines to store their
checkpoints. Because there are N/m groups, the number of unique sets in S is N/m.
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The probability that sd is an element in S Õ is N
m/

1
N
m

2
, which is the lower bound.

Therefore, we can conclude Group placement strategy is optimal for Problem 6.1
when N is divisible by m.
When N is not divisible by m. For simplicity, we rewrite N = pm + q, where
1 Æ q Æ m ≠ 1. For the first ÂN/mÊ ≠ 1 = p ≠ 1 groups, machines in the same group
have the same set of machines to store their checkpoints. For the last group, each
machine has a distinct set of machines to store its checkpoints and there are m + q

unique sets. Therefore, the total number of unique sets in S is m + q + p ≠ 1. Since
the lower bound of the number of sets is ÁN/mË = p + 1, the gap is

gap = (m + q + p ≠ 1) ≠ (p + 1)

= m + q ≠ 2 < 2m ≠ 3,
(6.3)

since 1 Æ q Æ m≠1. It suggests that the gap between the upper bound and probability
with the mixed placement strategy is bounded by (2m ≠ 3)/

1
N
m

2
. Because N ∫ m

and m is practically very small, the probability is very close to the upper bound.

Figure 6.3a illustrates an example of the group placement strategy with N = 4
and m = 2. There are two groups and each group has two machines. Each machine
has a local checkpoint, i.e., its local machine checkpoint, and a remote checkpoint, i.e.,
the checkpoint from the other machine in the same group. Figure 6.3b illustrates an
example of the ring placement strategy with N = 4 and m = 2, in which all machines
form a ring structure for checkpointing to CPU memory. Assume two machines fail at
the same time. With the group placement strategy, training can recover failures from
CPU memory except Machines 1 and 2, or Machines 3 and 4 fail simultaneously (a
total of two possible cases). However, with the ring placement strategy, the concurrent
failures of any two consecutive machines (four possible cases in total) will result in
the loss of both replicas of a checkpoint stored in CPU memory. Consequently, the
probability that training has to fetch remote persistent storage for failure recovery
with the group placement strategy is 50% lower than that with the ring placement
strategy. Figure 6.3c also illustrates an example of the mixed placement strategy with
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N = 5 and m = 2, in which the first two machines form a group and the last three
machines form a ring.

With the group placement strategy, we calculate the probability that Gemini can
recover failures from CPU memory using Corollary 6.1.

Corollary 6.1. When N is divisible by m and k machines are disconnected simulta-
neously, the probability that Gemini can recover failures from CPU memory is

Y
__]

__[

Pr(N, m, k) = 1, if k < m

Pr(N, m, k) Ø max{0, 1 ≠ N(N≠m
k≠m)

m(N
k ) }, if m Æ k Æ N

(6.4)

Proof. Gemini can certainly recover failures when k < m because there are available
checkpoint replicas in at least one of the machines. We then consider m Æ k Æ N .

With Algorithm 6.1 there are N/m groups in G after the group placement policy.
When k machines fail at the same time, if there exist m failed machines forming a
group that is an element of G, it indicates that the checkpoints stored in CPU memory
become incomplete and training has to recover from the remote persistent storage.

We first consider the case m Æ k < 2m. The number of combinations to choose k

machines from N machines is
1

N
k

2
. The number of combinations that lead to incom-

plete checkpoints in CPU memory is N
m

1
N≠m
k≠m

2
. Therefore, the probability probability

that Gemini can recover failures from CPU memory is

Pr(N, m, k) = 1 ≠
N

1
N≠m
k≠m

2

m
1

N
k

2 , if m Æ k < 2m. (6.5)

We then consider the case k Ø 2m. When we use the same method for m Æ k < 2m

to count the number of combinations, some combinations are counted more than once
and the total number of combinations is less than N

m

1
N≠m
k≠m

2
. Therefore, the probability

probability that Gemini can recover failures from CPU memory is

Pr(N, m, k) > max{0, 1 ≠
N

1
N≠m
k≠m

2

m
1

N
k

2 }, if k Ø m. (6.6)

We then have Corollary 6.1 by combining the two cases together.



123

According to Corollary 6.1, when the number of machines N is 16, the number
of replicas m is 2, and the failure machine k is 2, the probability is 93.3% and it
increases with N . It means that with two checkpoint replicas, Gemini can resume
training from CPU memory in most cases.

6.5 Minimizing Training Interference

Frequently writing checkpoints to remote CPU memory might hinder overall training
performance due to potential network bandwidth competition with training tra�c.
Our primary objective is to minimize the wasted time without compromising training
performance. In this section, we will explain how Gemini mitigates the interference
caused by frequent checkpointing. We begin by examining the possibility of minimiz-
ing the impact of checkpointing to CPU memory on model training (Section 6.5.1),
then discussing the challenges and the approaches we took to overcome them (Sec-
tion 6.5.2). Finally, we elaborate on the specific algorithm and mechanism we used
in Gemini (Section 6.5.3 & 6.5.4).

6.5.1 Tra�c Interleaving

Modern distributed training, such as large model training, relies on collective com-
munication operations for synchronization. For example, in ZeRO [166], each GPU
needs to fetch the parameters of each layer from other GPUs before its computation
in both forward and backward passes. These communication operations can block
computation when the parameters of a layer are not ready but the computation of
the previous layer has been completed. We denote the communication tra�c for
model computation, including gradient synchronization and parameter fetching, as
training tra�c. An example of training tra�c during model computation is shown
in Figure 6.4a. When checkpointing to remote CPU memory, its tra�c, denoted as
checkpoint tra�c, shares the same network as training tra�c, resulting in potential
network resource contention that may delay training tra�c and hinder computations.
When performing checkpointing at the start of subsequent iterations, it blocks the
training process and incurs non-negligible overheads for model training, as illustrated
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in Figure 6.4b. This significantly negates the benefits gained from the reduced wasted
time by checkpointing to CPU memory. Hence, Gemini must carefully orchestrate
the checkpoint tra�c to minimize its interference with training throughput. Fortu-
nately, we observe that the network has idle timespans overlapped with computation
and this naturally occurs in large model training. This observation provides a great
opportunity for Gemini to insert checkpoint tra�c in these idle timespans and overlap
checkpoint communications with computation, as shown in Figure 6.4c.

6.5.2 Di�culties and Approaches

Gemini needs to write checkpoints from local GPU memory to CPU memory on
remote machines. It first uses GPU-to-GPU communications to send checkpoints
between machines for interleaving checkpoint tra�c with training tra�c, which also
uses direct GPU-to-GPU communications [178, 110] among machines in large model
training [94, 235, 162]. After that, it transmits the checkpoints from GPU memory
on remote machines to their CPU memory with GPU-to-CPU copy. This design al-
lows scheduling training tra�c and checkpoint tra�c in the application layer without
relying on the network layer. Gemini orchestrates both types of tra�c by leveraging
existing inter-GPU communication libraries, such as NCCL [3], in a unified manner.
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However, this design raises two practical di�culties.
Di�culty: Extra GPU memory consumption. Naïvely sending a whole check-
point from a local GPU to a remote GPU consumes a significant amount of GPU
memory, which may trigger GPU out-of-memory (OOM) and crash the training pro-
cess, as shown in Figure 6.5b. The checkpoint size is huge in large model training. For
example, the checkpoint size of GPT2-100B [235] on each GPU is 9.4GB. Furthermore,
most GPU memory has already been used to store model parameters, gradients, and
intermediate results. Therefore, a remote GPU is unlikely to accommodate a whole
checkpoint during large model training.
Approach: Partitioning checkpoint. Although a whole checkpoint with several
GBs is too large for a remote GPU, we observe that each GPU usually has a few hun-
dred of memory available during training based on our profiling results. Gemini first
reserves a small GPU memory bu�er for checkpoint communications, then partitions
a whole checkpoint into small chunks and transfers the small chunks separately. The
remote GPU moves the received chunk to CPU memory once a communication com-
pletes making the bu�er available for the next communication. Figure 6.5c illustrates
the process of partitioning checkpoint.
Di�culty: Local GPU-to-CPU copy overhead. Checkpointing to remote CPU
memory includes a procedure of GPU-to-CPU copy on the receiver side. The sender
cannot transit new checkpoint chunks until the GPU-to-CPU copy is complete, caus-
ing communication bubbles in the GPU-to-GPU communication timeline, as shown
in Figure 6.5c. Since the GPU-to-CPU memory copy bandwidth is comparable to the
inter-machine GPU-to-GPU network bandwidth †, the bubble time could be close to
the inter-machine GPU-to-GPU checkpoint communication time, which may exacer-
bate the interference with model training.
Approach: Pipelining checkpoint transmission. Gemini uses a pipeline mecha-
nism to allow checkpoint communications to fully leverage the network idle timespans.
It splits the reserved GPU memory bu�er into multiple sub-bu�ers and partitions the
checkpoints into chunks that fit into these sub-bu�ers. Gemini alternatively uses

†We measured both bandwidths in p4d.24xlarge instances in AWS and both are around 400Gbps.
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these sub-bu�ers for transferring checkpoint chunks. When copying a chunk from
GPU to CPU memory, Gemini can simultaneously receive a new checkpoint chunk
using GPU-to-GPU communication in a separate sub-bu�er. Figure 6.5d illustrates
an example with two sub-bu�ers. Inter-machine GPU-to-GPU communication over-
laps with local GPU-to-CPU memory copy and the idle timespans are fully utilized
for checkpoint tra�c.

6.5.3 Checkpoint Partition Algorithm

Gemini uses a checkpoint partition algorithm illustrated in Algorithm 6.2 to parti-
tion checkpoints for transmission pipelining. Given the set of profiled network idle
timespans T = {t1, t2, . . . , td} (discussed in Section 6.5.4), Algorithm 6.2 generates a
scheduling of checkpoint partitions. Suppose there are p GPU bu�ers in Gemini and
the size of each bu�er is R/p, where R is the total reserved GPU memory size. Sup-
pose there are m checkpoint replicas, and m ≠ 1 replicas are sent to the remote CPU
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Algorithm 6.2 Checkpoint Partition Algorithm
Input: T = {t1, t2, . . . , td} is the set of idle timespans. C is the size of a checkpoint and m ≠ 1

is the number of checkpoints for communications. There are p bu�er parts and the size of
each part is R/p. B is the network bandwidth. µ œ (0, 1) is a coe�cient for the variance
of idle spans across iterations. f(s) is the communication time for a checkpoint chunk with
size s

Output: The checkpoint partitions.
115 Function checkpoint_partition():

116 t[d] = +Œ
117 partitions = []
118 cpkt_id = 0
119 remain_size = C

120 foreach t œ T do

121 remain_span = µ ◊ t while remain_span > 0 do

122 if remain_span Ø f(R/p) then

123 size = R/p

124 else

125 size = max{0, (remain_span ≠ –)B}
126 end

127 size = min{remain_size, size} if size > 0 then

128 remain_size = remain_size ≠ size

129 remain_span = remain_span ≠ f(remain_size)
130 partitions.add(size)

131 end

132 if remain_size == 0 then

133 if cpkt_id < m ≠ 1 then

134 cpkt_id = cpkt_id + 1
135 remain_size = C

136 else

137 return partitions

138 end

139 end

140 end

141 end

142 return partitions
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memory while one is stored locally. Suppose the time length of sending a partition of
size s to a receiver is f(s) = – + s/B, where – is the startup time for transmission
and B is the network bandwidth [235, 36, 199].

Algorithm 6.2 uses a coe�cient µ œ (0, 1) to consider the variance of the profiled
timespans across iterations (Line 7). Because the size of each bu�er is R/p, the max-
imum checkpoint chunk size is also R/p. The algorithm checks how many chunks it
can insert in each idle timespan with multiple rounds. In each round, it compares
f(R/p) with the remaining idle timespan (remain_span). If remain_span is greater,
it sets size to the maximum chunk size R/p (Lines 9-10); otherwise, it sets the size to
the amount of tra�c volume that can be transmitted during remain_span (Line 11).
It then compares size with the remaining checkpoint size (remain_size) and takes
the smaller one as the chunk size (Line 14). It accordingly updates remain_span

and remain_size for the next round (Lines 15-19). When remain_size equals zero,
the algorithm finishes the partition of one checkpoint. If there are multiple check-
point replicas for a higher failure recovery rate from CPU memory, the algorithm
resets remaining_size as the checkpoint size and determines the partition for the
new checkpoint again (Lines 21-23). The algorithm returns partitions after all the
checkpoints are partitioned.

Our evaluation in Section 6.7 shows that for all the evaluated models, Algo-
rithm 6.2 allows Gemini to fully utilize the network idle timespans and enables it
to perform checkpointing at the frequency of every iteration without interfering with
training.
Finish checkpointing within an iteration. However, it is still possible that the
total time required for checkpointing cannot be fit in the available network idle times-
pans. In such a scenario, Gemini places the unfinished checkpoint tra�c in the last
idle timespan, as Algorithm 6.2 sets the interval of the last idle timespan as positive
infinity (Line 2). Although checkpoint communications hinder the update opera-
tion and prolong the iteration time in this case, Gemini can reduce the checkpoint
frequency to amortize the incurred overhead.
Move checkpoints from GPU to local CPU. Each machine also needs to copy
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its checkpoint from GPU memory to its local CPU memory according to our place-
ment strategy discussed in Section 6.4. This checkpoint copy incurs no tra�c across
machines. Gemini also partitions this replica and overlaps its GPU-to-CPU copy with
communications for training tra�c. In this way, there is no interference between the
local GPU-to-CPU copy of its own checkpoint and other checkpoints.

6.5.4 Online Profiling

Gemini adopts online profiling for the first several iterations of training, e.g., 20 iter-
ations in our implementation, without checkpointing in order to capture the network
idle timespans during model training. It timestamps the start and the end time of
all communication operations in an iteration to derive the timeline of communica-
tion tra�c. Gemini then obtains the average time interval of each idle timespan
for subsequent checkpoint tra�c scheduling. We observed that the profiled timeline
remains almost constant across iterations, which is consistent with previous stud-
ies [217, 214, 234]. The normalized standard deviation of the measurements is less
than 10%. Gemini uses these idle timespan intervals to determine the checkpoint par-
titions in each idle timespan according to Algorithm 6.2 described in Section 6.5.3.

6.6 Resuming Training from Failures

Gemini achieves high-frequency checkpoints with the mixed checkpoint placement and
the tra�c interleaving algorithm. In this section, we will explain how Gemini uses
the checkpoints to resume training when failures occur. We first define our failure
classification and then describe how Gemini resumes training accordingly.

6.6.1 Failure Types

There are various failures that can occur during the training of large models [92,
152, 197, 203] and these failures have di�erent root causes and consequences. We
categorize these failures into two types from the perspective of recovery: software
failures and hardware failures, following the literature [92, 152, 197, 203, 79, 202].
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from di�erent failures.

Software failures are caused by bugs in software or errors in data. Software failures
can be fixed by restarting the training process without replacing hardware.
Hardware failures are caused by hardware issues, such as GPU malfunctions and
network failures. For example, bit corruptions induced by radiation can cause double
bit error, leading to data corruptions [203, 92]. The network links and switches that
connect GPU machines can fail [79, 198], disconnecting them from training. These
failures can occur in a single machine or multiple machines simultaneously. The
training cluster typically detects problematic machines and then replaces them with
healthy ones before resuming training.

6.6.2 Failure Recovery Mechanisms

Existing checkpointing solutions [71, 233, 184] make no distinction between software
failures and hardware failures. As shown in Figure 6.6a, they always retrieve the
checkpoints from the remote persistent storage regardless of the failure type, resulting
in costly wasted time. In this subsection, we will present the recovery mechanisms of
Gemini for both types of failures, respectively.
Software failures recovery. Recovering from software failure does not require
fetching checkpoints from other machines, and the training configurations (e.g., the
rank ID of the machine) remain the same. When a software failure occurs, the training
process is interrupted, but the hardware remains healthy and all checkpoints stored
in CPU memory are still accessible. Because each machine stores a replica of its own
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checkpoint, all machines can directly recover training from their local checkpoints, as
shown in Figure 6.6b.
Hardware failures recovery. When hardware failures occur, the training system
needs to replace the failed machines. The root agent in Gemini interacts with the
cloud operator (e.g., Auto Scaling Group platform in AWS) to replace the faulty
machines with healthy ones. When recovering training from hardware failures, there
are two cases: 1) there are still healthy machines in each checkpoint placement group
assigned by Algorithm 6.1, and 2) there is at least one checkpoint placement group
in which all machines fail simultaneously. We will next discuss these two cases.

Case 1: As each checkpoint placement group still has healthy machines maintain-
ing checkpoint replicas, Gemini can fetch the checkpoint replica from them for newly
added machines and then recover the training progress. Figure 6.6c illustrates an
example with four machines and two machines, Machine 2 and Machine 4, just failed
simultaneously. The root agent replaces the two failed machines with two healthy
ones. The two newly added machines replace their positions, reuse their machine
rank IDs, and retrieve their checkpoints from alive machines. Because a checkpoint
replica of Machine 2 was stored in Machine 1, Machine 2Õ (the one that replaced
Machine 2) retrieves the checkpoint from Machine 1 for failure recovery. Machine 4Õ

also retrieves the checkpoint from Machine 4. The machines that have no failures can
directly restart training from their local checkpoints.

Case 2: In this case, machines must retrieve checkpoints from the remote per-
sistent storage to ensure all machines recover training consistently. Although part of
the model checkpoints are still accessible in the alive GPU machines, they are not
consistent with the ones in the remote persistent storage because they are stored
from di�erent iteration numbers. In practice, the majority of failures during large
model training are software failures or hardware failures with one machine replaced;
it is rare to have two or more machine failures at the same time [20, 5]. Even with
multiple machine failures simultaneously, Gemini can still recover failures from CPU
memory in most cases thanks to the checkpoint placement strategy, as we will discuss
in Section 6.7.2.
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Standby machines. In case of hardware failures, the cloud operator is expected
to provide healthy machines to replace faulty ones immediately. However, this re-
placement operation heavily depends on the availability of healthy machines in the
GPU cloud and it can take a non-deterministic duration to successfully reserve new
machines for the current training workload. In order to minimize the waiting time re-
sulting from machine replacement, the training cluster can pre-allocate a few standby
machines. When a machine su�ers from hardware failures, a standby machine can
immediately become active to replace the failed one for failure recovery. After that,
the root agent returns the failed one and requests another standby machine. Gem-
ini allows users to specify di�erent numbers of standby machines according to their
training workloads and the availability of healthy machines in GPU clouds.
Failure detection. The cloud operators typically provide tools to detect training
failures and locate the failed machines. For example, Amazon SageMaker [24] has
tools for failure type detection and failure machine localization. Gemini relies on these
tools to detect failures in large model training. In addition, the worker agents and
the root agent in Gemini also periodically send heartbeat signals to the distributed
key-value store for failure detection.

6.7 Evaluation

In this section, we will demonstrate the e�ectiveness of Gemini for failure recovery in
large model training. Specifically, we will address the following research questions:
• Failure recovery performance: Can Gemini reduce the wasted time without

harming training throughput? (Section 6.7.2)
• Scalability: How does Gemini perform under di�erent failure frequencies and

training scales? (Section 6.7.3)
• E�ectiveness of tra�c interleaving: How does our tra�c interleaving algo-

rithm a�ect the training throughput? (Section 6.7.4)



133

Model size Hidden size Intermediate #Layers #AH
GPT-2 10B 2560 10240 46 40
GPT-2 20B 5120 20480 64 40
GPT-2 40B 5120 20480 128 40
RoBERTa 40B 5120 20480 128 40
BERT 40B 5120 20480 128 40
GPT-2 100B 8192 32768 124 64
RoBERTa 100B 8192 32768 124 64
BERT 100B 8192 32768 124 64

Table 6.2 : Configurations of di�erent language models. AH is short for attention heads.

GPT-2 10B means GPT with 10 billion parameters. The same naming convention applies

to other models.

6.7.1 Implementation and Experimental Methodology

Implementation. We implement Gemini on top of DeepSpeed [170] and use ZeRO-3
setting [166]. we adopt etcd [15] as the distributed key-value store implementation to
coordinate failure recovery. On the cloud provider side, we rely on Amazon EC2 Auto
Scaling Groups (ASG) [8] to manage GPU machines. When failures are detected
by ASG, the faulty machines are replaced with healthy ones. Such service is also
available in Google Cloud [10] and Microsoft Azure [9]. Gemini reserves 128MB
GPU memory for checkpoint communications. There are two CPU memory bu�ers
to store the checkpoints: one for the completed checkpoint and the other for the
ongoing one. When a failure occurs, the root agent notifies all alive agents to serialize
the latest complete checkpoints with torch.save(), allowing PyTorch to load the
saved checkpoints for failure recovery with torch.load().
Setups. We conduct all experiments on AWS EC2 platform. Unless otherwise
specified, we use 16 p4d.24xlarge instances for evaluations. Each instance has
1152GB CPU memory and it has 8 NVIDIA A100 (40GB) GPUs, which are inter-
connected via NVSwitch. p4d.24xlarge instances are connected through a 400Gbps
elastic fabric adaptor (EFA) network. We adopt FSx [13] as the remote persistent
storage and the aggregated bandwidth is 20Gbps. We also evaluate Gemini with
p3dn.24xlarge instances, which have 8 NVIDIA V100 (32GB) GPUs and are con-
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Figure 6.7 : The itera-

tion time of three large mod-

els without checkpoints and

with Gemini.

Figure 6.8 : The network

idle time of three large mod-

els without checkpoints and

with Gemini.

Figure 6.9 : The probabil-

ity that Gemini can recover

failures from checkpoints in

CPU memory.

nected to a 100Gbps EFA network. The used software versions are CUDA-11.6,
DeepSpeed-v0.7.3, PyTorch-1.13, nccl-v2.14.3, and etcd-v3.5.
Workloads. We evaluate Gemini with popular and representative large deep learn-
ing models, including GPT-2 [164], BERT [67], and RoBERTa [117]. We vary the
number of layers, hidden sizes, and intermediate sizes in these models [235, 166]. Ta-
ble 6.2 summarizes the detailed model configurations. We use the sequence length
512 and the vocabulary size 50265 for the evaluation. We set the micro-batch size to
8 with mixed-precision and we enable the activation recomputation [106, 144] in the
evaluation. The optimizer used is Adam [103]. The training dataset is Wikipedia-en
corpus [130].
Baselines. We adopt two baselines, Strawman and HighFreq, for the evaluations.
Strawman uses the checkpoint frequency following the setup in training BLOOM [5]
and it checkpoints model states every three hours. HighFreq aims to fully saturate
the bandwidth capacity of the remote persistent storage and it represents the best we
can do with remote storage-based solutions. HighFreq first profiles both the check-
point time tckpt and the iteration time Titer; it then checkpoints the model states
every Átckpt/TiterË iterations. Both baselines store the checkpoints in the remote per-
sistent storage, while the di�erence is the checkpoint frequency. Note that Gemini
also checkpoints to the remote persistent storage every three hours in addition to
checkpointing to CPU memory.
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Figure 6.10 : The average

wasted time of GPT-2 100B

with di�erent numbers of re-

placed instances.

Figure 6.11 : The check-

point time reduction of

Gemini over baselines under

di�erent bandwidth.

Figure 6.12 : Gemini

achieves a much higher

checkpoint frequency than

the two baselines.

6.7.2 Training E�ciency

In this subsection, we evaluate Gemini on both p4d.24xlarge and p3dn.24xlarge in-
stances. We first use 16 p4d.24xlarge instances to demonstrate the performance ad-
vantages of Gemini over the baselines on large-scale model training. The largest
model size we can train is 100B given the machine scale and the GPU memory size.
Further increasing the model size causes GPU out-of-memory errors.
Training time. We examined Gemini’s impacts on the training throughput by
benchmarking GPT-2 100B, RoBERTa 100B, and BERT 100B. We carried out 50
training iterations with Gemini, which performed checkpointing for every iteration,
and an equal number of iterations without checkpointing using vanilla DeepSpeed.
Figure 6.7 shows the iteration times for both settings across the three models. We
can find that Gemini does not a�ect the training iteration times. This is because the
network idle time during training is adequate to accommodate the checkpoint tra�c.
Figure 6.8 confirms that there is still available network idle time even after Gemini
inserts all the checkpoint tra�c. It indicates that Gemini can achieve per iteration
checkpointing without incurring extra overhead to the training throughput thanks to
the tra�c interleaving algorithm.

Since Gemini has negligible overhead for all the large models we evaluated, we
use the GPT-2 100B model as the representative in the following part for brevity.
RoBERTa and BERT have similar results and will not a�ect our conclusions.
Wasted time. We next evaluate the wasted time when a failure occurs. We first
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analyze the probability that Gemini can recover failures from CPU memory. Given
the checkpoint replica number m, the probability is determined by the number of
instances k that need to be replaced simultaneously (failures occurred on those in-
stances). When k < m, Gemini can always recover training from CPU memory.
When k Ø m, we can calculate the probability according to Corollary 6.1. Figure 6.9
plots the probability that Gemini can recover failures from CPU memory under dif-
ferent settings. The probability increases with the number of instances N . Suppose
there are two checkpoint replicas, i.e., m = 2. When N = 16 and k = 2, Gemini has a
probability of 93.3%; when k = 3, it still has a probability of 80.0%. We also consider
the ring strategy, in which instance i stores its model states in itself and instance
(i + 1) mod N . When N = 16 and k = 3, Ring’s probability is 25.0% lower than
that of Gemini. According to OPT-175B [233] observation, there are 1.5% instances
that fail every day. Even for a thousand-scale training cluster, the possibility of two
instances having failures at the same time is very limited. Therefore, Gemini with
m = 2 can recover failures from CPU memory for most cases.

We next calculate the average wasted time based on the measured iteration time,
checkpoint time, and retrieval time according to Expression (6.1). Figure 6.10 shows
the average wasted time for training of GPT-2 100B on 16 p4d.24xlarge instances with
di�erent numbers of replaced instances. The average wasted time of both Strawman
and HighFreq is deterministic because the checkpoints are always retrieved from the
remote persistent storage when failures occur. In contrast, the average wasted time of
Gemini varies. When there is no instance replaced, e.g., due to software failures, the
checkpoints are already at the local CPU memory. The average wasted time in this
case is 1.5◊ the iteration time (1.5Titer). When there is only one instance replaced
or two instances are replaced but training can be recovered from the CPU memory,
the extra overhead for failure recovery is to retrieve checkpoints from other instances
and the retrieval time is less than three seconds. In these cases, Gemini can reduce
the average wasted time by more than 13◊ compared to HighFreq. However, when
two instances are replaced and training cannot be recovered from the CPU memory,
of which the possibility is 6.7% with 16 instances according to Figure 6.9, Gemini
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degrades to Strawman.
Checkpoint time. To showcase the advantage of Gemini in terms of checkpoint
time, Figure 6.11 displays the checkpoint time reduction of Gemini over the baselines
under di�erent network bandwidths and di�erent numbers of instances. Both base-
lines, Strawman and HighFreq, have the same checkpoint time and it stays almost the
same as the number of machines increases from 4 to 16 because the aggregated band-
width of the remote persistent storage is fixed. In contrast, Gemini’s checkpoint time
reduces with an increase in the number of instances in our testbed because it utilizes
the aggregated network bandwidth among GPU machines to write checkpoints to the
CPU memory. The checkpoint time reduction also increases with the network band-
width connecting GPU instances. For example, with 16 p4d.24xlarge instances, the
reduction is 65◊ with a 100Gbps network, and it increases to more than 250◊ with
a 400Gbps network. It is very challenging for remote persistent storage to achieve
comparable performance as Gemini. To match the checkpoint time of Gemini in our
scenario, which involves 16 instances, persistent storage would need to achieve an
aggregated bandwidth of 6.4Tbps theoretically.
Checkpoint frequency. Gemini checkpoints model states to CPU memory for every
iteration. The iteration time of GPT-2 100B with 16 p4d.24xlarge is 62 seconds, but
the checkpoint time with Gemini is less than 3 seconds. As shown in Figure 6.12,
Gemini improves the checkpoint frequency over HighFreq by 8◊ and over Strawman
by more than 170◊. Note that the checkpoint frequency of Gemini is bounded by
the iteration time and it can achieve an even higher frequency with the computation
advancement of accelerators.

We then demonstrate that Gemini can also e�ciently support other training mod-
els on p3dn.24xlarge instances. The largest model size we can train with this hardware
setting is 40B. Further increasing the model size causes GPU out-of-memory errors
in our testbed.
Model training on p3dn.24xlarge. Figure 6.13a illustrates that Gemini minimally
a�ects the training throughput using 16 p3dn.24xlarge instances across various model
sizes (10B, 20B, and 40B) and model architectures (GPT-2, RoBERTa, and BERT).



138

(a) The iteration time. (b) The network idle time.

Figure 6.13 : Gemini is generalized to p3dn.24xlarge instances and other models.

The training e�ciency aligns with the findings from 16 p4d.24xlarge instances. Fig-
ure 6.13b contrasts network idle times during model training without checkpoints and
with Gemini, revealing that the network idle time is still su�cient to accommodate
the checkpoint tra�c.

6.7.3 System Scalability

In this subsection, we first report the overheads incurred by failures in Gemini and the
baselines. We then use simulation to demonstrate that Gemini is scalable to scenarios
with frequent failures and to support LLM training with thousands of instances.
Overheads incurred by failures. Besides the lost training progress, the checkpoint
time, and the retrieval time, there are other overheads in Gemini to recover training
from a failure. We train GPT-2 100B on 16 p4d.24xlarge instances and the training
process is illustrated in Figure 6.14. Gemini checkpoints the model states to the CPU
memory for every iteration. An instance failure is triggered during Iteration 4 and
it takes 15 seconds for the root agent to detect this failure. The root agent then
notifies all alive instances to serialize the checkpoints stored in CPU memory with
torch.save(). We observe that this operation is time-consuming and it takes 162
seconds to finish the serialization of two checkpoint replicas, one is from local and
the other is from another instance. We also measure the waiting time to successfully
reserve a new p4d.24xlarge instance with ASG to estimate the extra instance-replacing
overhead in case of hardware failures, which is around 4-7 minutes. Another noticeable
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Failure recovery in large model training

Failure

Failure detection 
(15s)

Checkpoint
Retrieval

Training

ckpt 1

Iter 1 Iter 2 Iter 3 Iter 4 Iter 3

Checkpoint 
serialization (162s)

ckpt 2 ckpt 3 ckpt 2
Restart warmup 

(253s)

Iter 4

Figure 6.14 : The overhead of failure recovery for GPT-2 100B training with Gemini. A

failure occurs during Iteration 4 and one instance is replaced.

(a) Di�erent failure rates. (b) Di�erent instance numbers.

Figure 6.15 : The scalability of Gemini under simulation.

overhead is the restart warmup time and it takes more than four minutes before the
training can proceed from Iteration 3. To sum up, in our testbed, the total overhead
resulting from a failure that can be recovered from CPU memory is around 7 minutes
for software failures and 12 minutes for hardware failures. Note that the instance-
replacing overhead for hardware failures can be greatly reduced by standby machines.

The two baselines have no checkpoint serialization overhead when a failure occurs,
but they have such overhead for every checkpoint to the remote persistent storage.
Their checkpoint communications to the remote persistent storage are asynchronous
to computation, but they need to serialize the checkpoints with torch.save(), which
blocks training. HighFreq checkpoints the model states every nine iterations and the
incurred overhead for each checkpoint serialization is around 81 seconds. Strawman
also has this overhead, but it is negligible due to the low frequency.

Based on the incurred overhead by one failure, we can simulate the training per-
formance of GPT-2 100B with di�erent failure rates and numbers of instances. We
consider software failures in the simulation because recovering training from hardware
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failures has a similar overhead as from software failures if standby machines are used.
Scaling to frequent failures. To evaluate the impact of failure rates, we con-
ducted simulations of training performance using 16 p4d.24xlarge instances and dif-
ferent checkpointing solutions. We measured the training performance using a metric
called the e�ective training time ratio, which indicates the percentage of productive
training progress achieved in a given period of time. Failures decrease this ratio due
to the overheads for failure recovery. The e�ective training time ratios with di�erent
solutions are shown in Figure 6.15a. We found that even with 8 failures per day,
Gemini remains highly e�cient with a performance ratio close to the baseline with
no failures. However, the costly overhead of checkpoint serialization, i.e. invoking
torch.save(), in HighFreq significantly hurts its performance. Even without any
failures, 14.5% time is spent on checkpoint serialization. On the other hand, Gemini
only serializes checkpoints when failures occur. Strawman is worse than HighFreq
due to its prohibitive wasted time.
Scaling to more instances. We also simulate the training performance with dif-
ferent numbers of instances involved in training. Following the training report of
OPT-175B [233], we assume that 1.5% instances fail every day. The failure frequency
increases with the number of instances. Figure 6.15b shows that with 1000 instances,
the e�ective training time ratio of Gemini is still around 91%, which is 54% higher
than HighFreq. Training with Strawman for failure recovery can hardly proceed be-
cause of the frequent failures and the prohibitive wasted time.

6.7.4 E�ectiveness of Tra�c Interleaving

In this subsection, we evaluate the e�ectiveness of Gemini’s tra�c interleaving algo-
rithm. To understand the performance contributions of its two approaches, we report
the iteration time of GPT-2 40B on 16 p3dn.24xlarge instances with the following
schemes for checkpointing to CPU memory.
• Baseline. It is the model training without checkpointing.
• Blocking. It checkpoints the model states to CPU memory, but the checkpoint

tra�c blocks training tra�c at the beginning of each iteration.
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Figure 6.16 : The iteration time of GPT-2 40B with di�erent schemes for checkpointing

to CPU memory. OOM is short for out of memory.

• Naïve interleave. It partitions checkpoint tra�c for interleaving, but each net-
work idle timespan only has one checkpoint partition.

• Interleave without pipeline. Each idle timespan can have multiple partitions,
but it only uses one GPU bu�er for checkpoint communications. The bu�er size
is 128MB.

• Gemini. It uses four small sub-bu�ers for pipelining checkpoint communications
and the size of each bu�er is 32MB.
As shown in Figure 6.16, the iteration time with Blocking is 10.1% higher than the

Baseline due to the extra checkpoint time. Naïve interleave can cause GPU out-of-
memory (OOM) errors because it requires a large GPU memory bu�er for checkpoint
communications. For example, the largest idle time span profiled during training is
1.6s and the required memory bu�er size is more than 2GB on each GPU. Interleave
without pipeline can greatly reduce the required GPU memory bu�er size and avoid
OOM error, but communications have to wait for GPU-to-CPU copy. The total
network idle time becomes insu�cient to accommodate the checkpoint tra�c in this
case and it worsens the iteration time by 3.5%. In contrast, the iteration time with
Gemini is almost the same as the Baseline because it can fully utilize the network
idle time by pipelining checkpoint communications.
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Chapter 7

Related Work

7.1 Related Work on Sparse Tensor Synchronization

Related work on communication schemes to support sparse tensors synchronization
has already been discussed in Section 3.2.5.
Acceleration of dense tensor synchronization. ATP [109] and SwitchML [183]
exploit programmable switches for the synchronization of dense tensors. BytePS [94]
uses spare CPU and bandwidth resources in GPU clouds to optimize communications.
Blink [209] generates optimal communication primitives for intra-machine communi-
cation with NVLink. PLink [119] designs a hierarchical aggregation scheme for DDL
in public clouds, where the machine-to-machine bandwidth is non-uniform due to the
hierarchical structure of data centers. ByteScheduler [160], P3 [91], and TicTac [85]
schedule communications of tensors closer to the output layer with higher priority.
These approaches disregard the values of gradients and communicate all gradients. In
contrast, Zen leverages sparsity in DNN models and only transmits non-zero gradients
to reduce the synchronization time.
Acceleration of sparse tensor synchronization. Parallax [102] utilizes Sparse
PS and it cannot achieve balanced communications across GPU machines in gradient
synchronization. Zen can achieve balanced communications by using a novel hierar-
chical hashing algorithm. Flare [62] and Libra [154] use programmable switches to
accelerate sparse tensor communications, but they rely on specific hardware. More-
over, Zen analyzes the characteristics of sparse tensors and explores the design space
for communication schemes to determine the optimal one, but prior approaches did
not consider these factors.
Hash algorithms for load balancing. Previous works have attempted to achieve



143

load balancing using hashing [37, 45, 60, 41, 221]. They typically assign two partitions
to a given index using two hash functions and then selecting the partition with more
available memory as the final destination [136, 174, 61, 137]. This line of works utilizes
the power of two choices [136, 174, 61, 137] in hashing. However, these methods
require serial writing of indices to memory and cannot leverage the parallel computing
power of GPUs. In contrast, Zen enables parallelizable computing on GPUs. While
DRAGONN [217] introduces a hash-based algorithm for parallel writing of non-zero
gradients to memory, it does not address the imbalanced communications in DDT
and cannot handle hash collisions, resulting in information loss. In contrast, Zen
achieves balanced communications and avoids information loss.

7.2 Related Work on Gradient Compression

Related work on gradient compression algorithms has already been discussed in Sec-
tion 4.2.2.
Compression-enabled systems. GRACE [227] quantitatively evaluates the im-
pacts of GC algorithms and observes that GC can incur non-negligible compression
overhead, but it does not study or address the challenges of applying GC to DDL. Sev-
eral frameworks have been recently proposed to support compression-enabled DDL.
HiTopKComm [188] designs a new communication scheme for GC, but it compresses
all tensors with GPUs and leads to prohibitive compression overhead. HiPress [38]
proposes compression-aware synchronization to overlap compression with commu-
nication and a selective compression mechanism to decide whether to compress a
tensor, but it only uses GPUs for compression and ignores the interactions among
tensors. BytePS [240] also supports GC, but it only uses CPUs for compression and
ignores the interactions among tensors as well. These frameworks only compress ten-
sors for inter-machine communication. In contrast, Espresso uses both GPUs and
CPUs for compression, analyses interactions among tensors to make compression
decisions, and addresses both intra- and inter-machine communication bottlenecks.
OmniReduce [74] introduces block gradient sparsification, which is a new type of GC
algorithm, but Espresso focuses on how to e�ciently apply GC to DDL.
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Layer-wise compression. Recent work [226, 26] quantitatively evaluated the im-
pacts of GC algorithms in a layer-wise fashion. They observe that GC can incur non-
negligible compression overheads, but they have no solution to address the challenges
of applying GC to DDT. HiPress [38] proposes a selective compression mechanism to
determine whether to compress a tensor, but it still applies GC algorithms to a DDT
job in a layer-wise fashion and incurs costly compression overheads. Cupcake uses a
fusion fashion to minimize the incurred compression overheads.
Tensor fusion scheduling. Distributed deep learning frameworks batch mul-
tiple tensors for one communication operation to improve communication e�-
ciency [187, 112, 50, 176]. However, this mechanism takes place after compression
and is orthogonal to GC algorithms. PipeSwitch [39] fuses tensors to pipeline model
transmission over the PCIe for fast context switching of deep learning applications.
In contrast, Cupcake fuses tensors to improve compression e�ciency.

7.3 Related Work on Fault Tolerance

Checkpointing in deep learning. Deep learning frameworks, such as Py-
Torch [156], TensorFlow [25], and MXNet [50], provide users with the interfaces to
checkpoint model states during training for failure recovery. Unlike Gemini, it is the
users’ responsibility to decide how to checkpoint, such as the checkpoint frequency and
storage location. To reduce checkpointing overheads, DeepFreeze [145] performs asyn-
chronous checkpointing but stores checkpoints in remote persistent storage. Check-
Freq [139] dynamically adjusts the checkpointing frequency, but the remote storage
bandwidth limits the highest frequency. In contrast, Gemini stores checkpoints in
CPU memory, enabling much higher frequencies than DeepFreeze and CheckFreq.
Check-N-Run [71] compresses checkpoints with lossy schemes to reduce required stor-
age, but this may harm model accuracy and incur compression overheads. Gemini
stores the original checkpoints without impacting accuracy or incurring compression
overheads. Gandiva [225] assumes healthy machines for checkpointing with an on-
demand checkpoint mechanism for job migration. Because any machine involved in
training can experience hardware failures, Gandiva’s checkpoint mechanism cannot
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handle this case in which checkpoints stored in failed machines will get lost. Further-
more, its on-demand checkpointing cannot tackle unexpected failures during large
model training. In contrast, Gemini aims to recover training from both unexpected
software and hardware failures.
Checkpointing in distributed systems. Diskless checkpointing [161] stores check-
points in CPU memory. It requires processors to encode a checkpoint with parity and
their checkpoints can be recalculated when a processor fails. However, encoding and
decoding a checkpoint of large model training is extremely expensive. Instead, Gem-
ini employs redundant checkpoints for failure recovery. FTC-Charm++ [237] stores
two checkpoint copies on two processors for fault tolerance. However, it lacks an
analysis of optimal checkpoint placements. Unlike traditional distributed systems, a
key challenge in Gemini is to schedule checkpoint tra�c to minimize its interference
with model training. This di�erentiates Gemini from existing work on checkpointing
for failure recovery in distributed systems.
Communication scheduling in distributed training. ByteScheduler [160], Tic-
Tac [85], and P3 [91] aim to improve the performance of training by scheduling the
communication orders of tensors. These works primarily focus on accelerating training
communication. They are orthogonal and complementary to Gemini because Gem-
ini focuses on minimizing interference with training communication by scheduling
checkpointing communications.
Failure recovery with spot instances. Bamboo [201] uses redundant computation
to provide resilience and fast recovery for training large DNN models on preemptible
instances. Gemini checkpoints to CPU memory and doesn’t require redundant com-
putation. Varuna [35] also enables large model training on preemptible instances, but
it requires users to manage the checkpoints, such as the frequency and the storage,
for failure recovery. In contrast, Gemini o�ers transparent checkpointing for failure
recovery, eliminating the need for users to manage checkpoints.
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Chapter 8

Conclusions and Future Directions

We conclude this thesis in this chapter by summarizing our contributions (Section 8.1)
and suggesting potential future research directions (Section 8.2).

8.1 Conclusions

This thesis is dedicated to advancing the scalability of distributed deep learning
through a strategic focus on optimizing communication across both the data plane and
the management plane. The foundational principle underlying this research asserts
the feasibility of alleviating communication bottlenecks in distributed deep learning
by harnessing existing hardware resources within training systems, complemented by
intelligent tra�c and resource scheduling algorithms. We approach these communi-
cation challenges with a fresh perspective, grounded in fundamental principles.

Zen revolutionizes sparse tensor synchronization by finding the optimal synchro-
nization scheme from first principles (Chapter 3). Departing from intuition-driven
approaches that often yield suboptimal performance, this initiative systematically
analyzes the design space of schemes for sparse tensor synchronization. By discerning
the optimal schemes under varied scenarios, Zen ensures the determination of an opti-
mal scheme tailored to the unique characteristics of sparse tensors in distributed deep
learning. This first-principle analysis guarantees Zen’s ability to deliver near-optimal
performance in the communication time of gradient synchronization.

Espresso and Cupcake embark on a comprehensive reevaluation of compres-
sion strategies and granularity for gradient compression from first principles (Chap-
ter 4 and Chapter 5). Addressing the limitations of existing approaches developed
primarily from an algorithmic perspective, they critically rethink the design space
for compression strategies and granularity in gradient compression operations from
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a systematic perspective. By identifying and implementing near-optimal compres-
sion strategies and optimal fusion strategies, they significantly enhance the training
throughput of compression-enabled distributed deep learning.

Gemini pioneers a redefined hierarchical storage system for checkpoint manage-
ment in distributed deep learning (Chapter 6). It minimizes failure recovery overhead,
particularly in large-scale model training, by distinguishing checkpoints for di�erent
purposes and strategically segregating them into di�erent storage layers based on
their storage bandwidth and capacity characteristics. This first-principle analysis en-
ables Gemini to store checkpoints for failure recovery at extremely high frequency
while preserving user flexibility in checkpoint management.

Collectively, these groundbreaking initiatives exemplify the paradigm shifts
brought forth by this thesis, leveraging a fresh perspective and fundamental anal-
ysis to substantially enhance the system e�ciency of distributed deep learning by
optimizing both data-plane and management-plane communications. Notably, two
techniques developed in this thesis have been adopted by modern distributed deep
learning systems. Espresso has been incorporated into BytePS [94] as its gradient
compression module and Gemini is serving as an in-memory checkpointing system in
Amazon Web Services (AWS) to bolster fault tolerance in large model training.

8.2 Future Directions

This thesis represents a significant advancement in the development of dis-
tributed deep learning systems with optimized communications for popular training
paradigms, such as data parallelism and static training, i.e., training jobs with fixed
computation resources. In the following section, we will explore two potential future
directions for further improving communications optimization for both model serving
and elastic training with spot instances [31, 59, 133].

8.2.1 Communication Optimizations for Model Serving

The research presented in this thesis focuses on optimizing communications in model
training. However, communications can also become a bottleneck in model serving,
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especially in the context of large language models (LLMs). Unlike traditional DNN
models like ResNet [87] and VGG [190] that can be fitted in a single GPU, modern
large models such as OPT-175B and Mixture-of-Expert transformers model [68, 53]
need to be partitioned across multiple GPUs. While existing work focuses on op-
timizing computation resource scheduling [114, 239] for serving, there is a lack of
comprehensive analysis on serving tra�c across GPUs that are typically connected
by PCIe [11, 12] and how it a�ects the serving performance. Future work should
conduct extensive measurements and evaluations on serving tra�c under di�erent
types of accelerators, parallelism strategies, and network bandwidths to understand
the tra�c characterizations and optimize communications from the first principle to
enhance serving throughput and latency.

Additionally, hallucination [171, 126] is a big issue in the context of LLMs where
the generated information is plausible-sounding but inaccurate or fabricated. A vector
database [23] is a promising solution to address hallucination by facilitating contex-
tual understanding and supporting the incorporation of external knowledge to help
improve the model’s ability to generate accurate and contextually relevant informa-
tion. Di�erent from traditional databases, such as MySQL [69] and PostgreSQL [140]
that excel in managing structured data with predefined relationships and retrieving
data by indices, vector databases are tailored for handling high-dimensional vectors
that are mathematical representations of objects and their queries often involve sim-
ilarity search. However, it is challenging to design a communication-e�cient and
scalable vector database system for LLMs. A distributed vector database is a must
because there are typically billions of entries that cannot be fitted into a single de-
vice. Unfortunately, under current designs [95], its communications cannot scale with
the number of devices in the distributed vector database because each device has to
process every query for similarity search with all entries in the database. Future work
shall design a scalable vector database for LLM in terms of query tra�c and achieve
load-balanced query distribution among all the nodes.
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8.2.2 Fault Tolerance for Training with Spot Instances

This thesis aims to optimize management-plane communications to minimize failure
recovery overhead in static training using on-demand instances [21, 22], which are a
type of cloud computing resource provided by cloud service providers on a pay-as-
you-go basis. Recently, there has been a lot of interest in training DNN models using
spot instances to reduce the monetary cost due to their much lower prices [201, 90].
However, compared to training with on-demand instances, this comes with the dis-
advantage of frequent preemptions, making e�cient fault tolerance crucial to reduce
the overhead of failure recovery.

Unfortunately, the design of Gemini cannot be directly applied to training with
spot instances. This is because the number of available instances for training can
change when some instances are preempted. As a result, the training system has to
reconfigure the parallelism strategies. For instance, it has to update the number of
pipeline stages in pipeline parallelism [142] or the partition number in ZeRO-3 [166].
Also, the checkpoints saved by each GPU cannot be used for failure recovery directly
because the parallelism reconfiguration requires the checkpoints to be repartitioned
to match the updated parallelism strategies. It would be interesting to research how
to determine the optimal parallelism configuration after instance preemptions and
e�ciently repartition checkpoints for training with spot instances.

Another interesting future direction is to explore the possibility of using both
on-demand and spot instances for training. Current solutions either solely rely on
on-demand instances [213] or spot instances [201, 35, 90], but we believe that com-
bining both options could be beneficial. The overhead for updating the parallelism
configuration is non-negligible in the event of instance preemptions. One possible
solution to avoid this overhead is to temporarily replace the preempted instances
with on-demand instances, and then replace these expensive on-demand instances
with cheaper spot instances once they become available again. However, this solu-
tion involves a trade-o� between the reduced overhead of parallelism reconfiguration
and the extra cost of using on-demand instances. Therefore, further research could
investigate how to choose between parallelism reconfiguration and spot instance re-
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placement with on-demand instances at runtime in order to minimize the monetary
cost of training.
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