
1970 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Shufflecast: An Optical, Data-Rate Agnostic, and
Low-Power Multicast Architecture for

Next-Generation Compute Clusters
Sushovan Das , Afsaneh Rahbar , Xinyu Crystal Wu, Graduate Student Member, IEEE,

Zhuang Wang, Weitao Wang, Ang Chen, and T. S. Eugene Ng , Senior Member, IEEE

Abstract— An optical circuit-switched network core has the
potential to overcome the inherent challenges of a conventional
electrical packet-switched core of today’s compute clusters.
As optical circuit switches (OCS) directly handle the photon
beams without any optical-electrical-optical (O/E/O) conver-
sion and packet processing, OCS-based network cores have
the following desirable properties: a) agnostic to data-rate,
b) negligible/zero power consumption, c) no need of transceivers,
d) negligible forwarding latency, and e) no need for frequent
upgrade. Unfortunately, OCS can only provide point-to-point
(unicast) circuits. They do not have built-in support for one-to-
many (multicast) communication, yet multicast is fundamental
to a plethora of data-intensive applications running on compute
clusters nowadays. In this paper, we propose Shufflecast, a novel
optical network architecture for next-generation compute clusters
that can support high-performance multicast satisfying all the
properties of an OCS-based network core. Shufflecast leverages
small fanout, inexpensive, passive optical splitters to connect
the Top-of-rack (ToR) switch ports, ensuring data-rate agnos-
tic, low-power, physical-layer multicast. We thoroughly analyze
Shufflecast’s highly scalable data plane, light-weight control
plane, and graceful failure handling. Further, we implement a
complete prototype of Shufflecast in our testbed and extensively
evaluate the network. Shufflecast is more power-efficient than
the state-of-the-art multicast mechanisms. Also, Shufflecast is
more cost-efficient than a conventional packet-switched network.
By adding Shufflecast alongside an OCS-based unicast network,
an all-optical network core with the aforementioned desirable
properties supporting both unicast and multicast can be realized.

Index Terms— Multicast architecture, next-generation compute
clusters, optical circuit-switched core, data-rate agnostic, power,
capital cost.

I. INTRODUCTION

TRADITIONAL packet-switched network cores in today’s
compute clusters are not sustainable in the long run

as CMOS-based electrical packet switches face the chal-
lenge posed by the end of Moore’s Law [11], [52]. The
power consumption of the commodity Ethernet switches esca-
lates at a faster rate compared to the switching capacity,

Manuscript received 9 April 2021; revised 4 November 2021; accepted
14 February 2022; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor B. Ramamurthy. Date of publication 22 March 2022; date of
current version 17 October 2022. This work was supported in part by NSF
under Grant CNS-1718980, Grant CNS-1801884, and Grant CNS-1815525.
(Corresponding author: Sushovan Das.)

The authors are with the Department of Computer Science, Rice University,
Houston, TX 77005 USA (e-mail: sd68@rice.edu).

Digital Object Identifier 10.1109/TNET.2022.3158899

thus hindering the free scaling for next-generation compute
clusters. For example, a 400 Gbps Ethernet switch with
Broadcom Tomahawk III chip and bare metal hardware has
10.8× more power consumption per port than a 25 Gbps
Ethernet switch with Broadcom Trident III chip and similar
features. Optical circuit switching technologies seem to be
the most promising alternative. The major advantages of
such optical circuit-switched network cores over the electrical
packet-switched counterparts are as follows: a) optical circuit
switches (OCS) are agnostic to data-rate as they forward the
incoming photons directly, b) OCS have negligible/zero power
consumption because they are bufferless and their operating
principles are simple (e.g., mirror rotation, diffraction etc.),
c) there is no need for transceivers at the network core
because of no optical-electrical-optical (O/E/O) conversion,
d) OCS have negligible forwarding latency as they do not
need packet-by-packet processing, and e) the network core
does not need frequent upgrade because OCS are data-rate
agnostic. As a result, designing next-generation compute clus-
ter architectures with optical circuit-switched cores has been
gaining significant momentum during recent years. Different
proposals have leveraged a wide range of OCS technologies
e.g., 3D/2D MEMS [38], [43], [47], [51], arrayed waveguide
grating router (AWGR) [11], [63], [65], [66], free-space optics
mirror assembly [30] etc.

However, unlike the packet-switched network cores that
can natively support one-to-many (multicast) communication,
OCS-based network cores cannot inherently multicast packets
to multiple destinations. The fundamental reason is that OCS
are only capable of providing point-to-point (unicast) circuit
connections between source-destination pairs with some form
of dynamic reconfigurability. Having no support for multicast
is a serious technological gap, as data-intensive applications
are on the rise in large-scale compute clusters and they heavily
rely on iterative big-data multicasts. For instance, consider dis-
tributed machine learning (ML) workloads in compute clusters
today. Take the LDA algorithm [15] as an example. Gigabytes
of data representing the word distribution of all the sampled
topics are multicasted in each algorithm iteration. Since an
LDA job runs for thousands of iterations, multicast traffic
volume can easily reach terabytes. Other ML examples include
the Logistic Regression algorithm for Twitter spam filtering
and the Alternating Least Squares algorithm for Netflix movie

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8842-7612
https://orcid.org/0000-0003-2705-399X
https://orcid.org/0000-0003-2954-0767

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1971

rating prediction [25]. Both jobs take hundreds of iterations,
and multicast communications account for 30% and 45% of
the job completion time, respectively. Next, consider high per-
formance computing (HPC) workloads which include various
scientific data analysis jobs [29], [34], [60]. Those applications
perform iterative multicasts using MPI_Bcast [8], which is
a primitive in the MPI framework for one-to-many message
passing. Consider also data mining workloads (e.g., Apache
Hive [54], Spark SQL [24]). In such workloads, one of the
most critical and time-consuming operations is the distributed
database join, in which one of the input tables is multicasted
to all workers. These tables are up to 6.2 GB in a popular
database benchmark [3].

Hence we believe, enabling high-performance multicast
for next-generation compute clusters while preserving all the
properties of OCS-based network core is the most necessary
next step, as it will provide a crucial missing piece of the
all-optical circuit-switched network puzzle. However, conven-
tional solutions are not enough. On one hand, application-
level peer-to-peer overlays on OCS-based cores would be
a zero capital-cost solution, but it would suffer from poor
multicast performance and high power consumption due to
redundant data transmission. On the other hand, network-level
multicast (a.k.a. IP-multicast) on a separate packet-switched
core (complementing the OCS-based unicast-capable core),
despite achieving ideal multicast performance, won’t satisfy
any of the OCS properties.

Passive optical splitter is a potentially adoptable technology
which supports data-rate agnostic physical-layer multicast
satisfying all the properties of OCS-based network core. How-
ever, designing a cluster-wide multicast capable network using
optical splitters is not straightforward. A single giant splitter
cannot span across all the ToRs to provide a cluster-wide mul-
ticast tree, because the insertion loss of a splitter proportionally
increases with its fanout. No optical transceiver would be able
to compensate such high insertion loss of that giant splitter.
Also, splitter cannot make smart forwarding decisions when
necessary, due to lack of software control.

We present a novel optical architecture called Shufflecast
to support high performance multicast in next-generation
compute clusters, which complements any unicast capable
OCS-based network cores and preserves all the properties.
Shufflecast has a unique optical-splitter topology which can
scale to arbitrary network size even using small fanout split-
ters, ensuring data-rate agnostic multicast at scale. We show
that ToR-to-ToR-level routing on Shufflecast can be static,
yet such simplicity in routing still optimally exploits the
topology and enables multiple one-to-all multicast to happen
simultaneously at line-rate. Moreover, such static nature of
routing eliminates the need for runtime ToR-to-ToR-level tree
construction, group state exists only at the network edge;
which makes its control plane light-weight. Shufflecast is
robust enough against single relay failure. We design a failure
recovery algorithm which completely restores the reachability
with graceful performance degradation. Finally, we develop
a prototype implementation of Shufflecast and perform com-
prehensive testbed evaluation. We demonstrate that Shuffle-
cast is up to 1.77× more power-efficient compared to a

peer-to-peer overlay on an OCS-based unicast network core.
Also, Shufflecast is up to 1.85× more power-efficient
and 1.89× more cost-efficient compared to IP-multicast on
a minimal-layer packet-switched network core. Shufflecast
ensures high physical-layer reliability and works well with
existing transport layer protocols. Furthermore, we show that
real-world high-throughput and low-latency applications can
leverage and benefit from Shufflecast with only minor modi-
fications.

II. MOTIVATION

A. Advantages of OCS-Based Network Core

The fundamental properties of OCS-based network cores
are: a) data-rate agnostic nature, b) negligible/zero power con-
sumption, c) no need of transceivers, d) negligible forwarding
latency, and e) no need for frequent upgrade. OCS are agnostic
to data-rate because they direct the incoming photon beams
across predefined circuits irrespective of the modulation rate
of the electronic signal. OCS intrinsically have negligible or
zero power consumption due to their operating principles. For
example, MEMS-based OCS consume very little power just to
drive the DSP circuitry used for rotating the mirrors to setup
the circuits among input/output ports. As another example,
AWGR switches are fully passive (i.e., consumes no power)
as they perform wavelength routing of the optical signals
across the predefined input/output ports based on diffraction
grating. As OCS deal with photons, they do not need optical
transceivers for O/E/O conversion. As a consequence, OCS
do not need any electronic data processing or buffering which
leads to negligible forwarding latency. Due to the data-rate
agnostic property and absence of transceivers, the OCS-based
network cores need not be replaced even as the network edge
(ToRs and servers) is upgraded to higher speeds. Finally, the
combination of all these aspects results in OCS-based network
cores to be sustainable in the long run, while achieving close to
non-blocking network performance for point-to-point (unicast)
communication. Hence, there is a major momentum shift
towards building such OCS-based cores for next-generation
compute cluster architectures [11], [30], [38], [43], [51], [65].

B. OCS-Based Network Core Lacks of Multicast Capability

Unlike the packet-switches, OCS are not capable of support-
ing point-to-multipoint (multicast) connectivity. However, dis-
tributed ML/HPC/database applications are dominating work-
loads in today’s compute clusters and such applications heavily
rely on multicast. Hence, there is an urgent need for the
next-generation compute clusters to support high performance
multicast while preserving all the properties of OCS-based
network core. Under these circumstances, the easiest approach
would be to deploy the application-level peer-to-peer over-
lay on OCS-based cores. Here, the application organizes its
processes into an overlay network and the peers distribute mul-
ticast messages as TCP-based unicast flows [12], [21], [22],
[27], [33], [35], [55]. Despite being a zero capital-cost solution
with easy deployability, peer-to-peer overlay-based multicast
suffers from bandwidth inefficiency because of significant data
packet duplication at the end hosts and high control overhead.
Such high data redundancy leads to non-negligible link stress

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1972 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Fig. 1. A “hybrid” network architecture: OCS-based core serves unicast and
a separate packet-switched network core serves multicast traffic. The minimal-
layer packet-switched network core requires 175% excess resource to support
one cluster-wide multicast tree across eight ToR (4-port) switches.

(e.g., 1.9 − 10×) which becomes worse with large multicast
group size [18], [21], [26]. Even when very carefully opti-
mized by experts, redundancy is still at 39% [18]. Additionally,
application layer overlays can lead to unpredictable latency
fluctuation in relay server performance with large multicast
group size [14]. Based on our experiments, overlay multicast
in state-of-the-art frameworks like MPI [8] and Spark [25], can
be 3− 5.7× slower than optimal (see section VI-A). Overlay-
based multicast also suffers from high power consumption due
to redundant data transmission.

Therefore, enabling high performance multicast in
next-generation compute clusters while preserving all the
properties of OCS-based network core is challenging.
Conventionally we could imagine a “hybrid” network
architecture, where OCS-based network core serves the
unicast traffic and a separate hierarchical packet-switched
network core serves the multicast traffic exclusively. Such
a packet-switched network core would preserve the ideal
multicast performance, as the packet-switches can inherently
support IP-multicast forwarding without any data redundancy.
However, it would violate all the OCS properties, as packet
switches are not agnostic to data-rate; they have high
power consumption; they need transceivers, packet-by-packet
processing and short-term upgrade. Moreover, such a network
would have high capital cost. Even constructing a minimal
layer packet-switched network core using identical port-count
packet switches (same as ToR switches) would require
non-trivial amount of electronics. To quantify such effect,
we define a metric “excess resource usage” which is the ratio
of extra switch ports to total ToR uplink ports, expressed
in percentage. As an illustrative example, consider a simple
cluster with eight 4-port ToR switches shown in Fig. 1.
To support a one-to-all multicast tree using a minimal-layer
packet-switched network core, we need 14 extra switch ports
apart from 8 uplink ToR ports, leading to 175% excess
resource usage. Similarly, a cluster with 192 32-port ToR
switches require at least 107% excess resources to enable a
one-to-all multicast. Hence, deploying such a network will
not be sustainable in the long run.

C. Explore Optical Splitter Technology

Fortunately there exists optical splitters, an alternative tech-
nology to enable high performance multicast without data
duplication. Optical splitter is a small passive device that

splits the incoming optical signal from one input fiber to
multiple output fibers (defined as fanout), thus providing
built-in physical layer support for line-rate multicast. Addi-
tionally, optical splitter satisfies all the properties of OCS
i.e., agnostic to data rate as it has no electronic processing,
passive and no power consumption, no O/E/O conversion,
bufferless and negligible latency, long term sustainable and no
frequent upgrade. Furthermore, splitters are inexpensive and
commercially available [6].

But, designing a low-diameter yet cluster-wide scalable mul-
ticast capable architecture is still an open problem, as making
use of splitters have several difficulties. Naïvely we could use
one giant splitter to directly join all the ToRs in a cluster
consuming one transceiver port from each. Such a design is
unrealistic and practically infeasible because the insertion loss
(in absolute scale) of a splitter increases proportionally with
bigger fanout. Empirically, the insertion loss (in log scale)
of a splitter with fanout p is given by 0.8 + 3.4 log2 p dB.
Hence, a compute cluster with 1024 ToRs would require a
giant splitter of fanout 1024, having insertion loss of 34.8 dB.
Such high insertion loss cannot be compensated by any
commercially available optical transceiver. A high-gain optical
amplifier would be able to compensate such loss, but at the
cost of higher power consumption, higher capital cost [10] and
lower signal-to-noise ratio (SNR) at the receiver. Hence, such
a network has limited scalability. Moreover, splitter is a dumb
device, i.e., it does not have the ability to make smart decisions
e.g., configure the multicast trees for different sources, redirect
the traffic during failure etc.

We design Shufflecast, a highly scalable and low-
diameter multicast-capable optical network architecture for
next-generation compute clusters, which leverages small
fanout passive optical splitters to connect the ToR ports.
Thus, Shufflecast provides high performance multicast, while
preserving all the OCS properties. By supporting multicast and
complementing the unicast capable OCS-based network core,
Shufflecast is a crucial component in the all-optical network
core puzzle. In the next sections, we will show the following
advantages of Shufflecast:

a) Shufflecast’s data plane achieves high scalablility with
low network diameter (Sec. III-A) using small fanout
splitters, ensuring data-rate agnostic multicast. As Shuf-
flecast can scale with limited number of ToR ports, it has
low capital cost (Sec. VI-A)

b) The optimal ToR-to-ToR-level routing over Shufflecast
(Sec. III-A) supports simultaneous one-to-all multicasts
at line-rate. Also, Shufflecast is power efficient compared
to the conventional multicast solutions (Sec. VI-A).

c) As the routing is static, ToR-to-ToR-level multicast tree
construction at runtime is not necessary; group state exists
only at the network edge. Hence, the control plane of
Shufflecast is very simple and light-weight (Sec. III-B).

d) Shufflecast provides good failure resilience and
graceful performance degradation after failure recovery
(Sec. III-C and VI-C).

e) Shufflecast can reliably support multiple multicast groups
using existing multicast transport protocols (Sec. VI-B).

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1973

Furthermore, real-world applications can benefit from
Shufflecast with minor modifications (Sec. VI-D).

III. SHUFFLECAST ARCHITECTURE

In this section, we discuss the Shufflecast architecture in
detail with data plane design, control plane design and failure
handling.

A. Data Plane

In the Shufflecast data plane, passive optical splitters pro-
vide direct ToR-to-ToR connectivity. The optical transceivers
and splitters are co-located at the ToRs without consuming
extra rack space.

1) Topology: The Shufflecast topology is parameterized
by p and k, where p denotes the number of ToRs that a
single ToR connects to via a splitter, and k is the number
of logical ToR columns in the topology. In general, a p, k-
Shufflecast has N = k · pk ToR switches forming a p-regular
graph, with each column having pk ToRs. Fig. 2 shows an
example of 2, 2-Shufflecast, where there are 8 ToRs arranged
in 2 columns, with 4 ToRs per column and each ToR equipped
with 1:2 optical splitter (nodal degree 2). More examples are in
Appendix A-A1. Note that Shufflecast can also accommodate
an arbitrary number of ToRs. Assume the total number of
ToRs = T , where k1 · pk1 < T < k2 · pk2 . To accommodate
T ToRs, the network is wired as a p, k2-Shufflecast where
a few physical ToRs would act as additional logical nodes
to maintain the connectivity pattern. Such a strategy would
require more than one splitter at those ToR switches. For
example, consider T = 15; the nearest Shufflecast instance for
p = 2 is a 2, 3-Shufflecast (24 ToRs), where 9 ToRs would be
assigned two splitters and act as two distinct logical sources.

Logical ToR ID: We realize the Shufflecast topology using
IP-based L2/L3 Ethernet switches. The “logical” ToR IDs
are defined to explain the properties of the topology and the
routing scheme. In a p, k-Shufflecast, the columns (c) are
numbered as 0, 1 . . . (k − 1) from left to right, and the rows (r)
are numbered as 0, 1 . . . (pk − 1) from top to bottom. Any ToR
with a decimal representation ‘i’ (i ∈ [0, N − 1]) is uniquely
identified by the pair

(
ci, ri

)
where column ID (ci) is � i

pk �
and row ID (ri) denotes the k-tuple p-ary representation of
(i mod pk) given by [ri

k−1r
i
k−2 . . . ri

1r
i
0]. For 2, 2-Shufflecast

shown in Fig. 2, each ToR has a binary 2-digit row ID
r1r0. Considering any ToR switch e.g., ToR 6, its column
ID is � 6

22 � = 1 and row ID is the binary representation of
(6 mod 22) = 2, i.e., 10, resulting in a combined ID (1, 10).

ToR connectivity: We can further define the ToR connectiv-
ity pattern of Shufflecast topology using such logical IDs. Any
ToR (ci, ri

k−1r
i
k−2 . . . ri

1r
i
0) is connected to p other ToRs of

the next column (cj =
(
ci + 1

)
mod k), having the row IDs

as 1 place left-shift of its own row-ID digits with the least
significant digit m ∈ [0, p− 1](i.e., rj = [ri

k−2r
i
k−3 . . . ri

0m]).
Partition: We logically partition the columns into p regions

based on the logical ToR IDs. The partition ID of each ToR
is defined by the most significant digit of the ToR’s p-ary
row ID (i.e., rk−1 ∈ [0, p− 1]). For the 2, 2-Shufflecast in
Fig. 2, every column has two partitions with partition IDs 0

Fig. 2. Connectivity of 2, 2-Shufflecast.

(ToRs {0, 1} and {4, 5}) and 1 (ToRs {2, 3} and {6, 7}). All
the outgoing links from partition ID 0 are marked with darker
arrows and those from partition ID 1 are marked with lighter
arrows. The notion of partition has two important properties.
a) A logical partition refers to an independent resource unit
(i.e., subset of relays) of Shufflecast topology, which is evi-
dent from the connectivity structure. In general, a partition
containing pk−1 ToRs is sufficient to forward the multicast
traffic to all the pk ToRs of next column. b) The number of
partitions in a given column dictates the degree of parallelism
for Shufflecast topology. Because, the relays from different
partitions of a given column can forward multicast traffic in
parallel without any interference. In Sec. III-A3, we discuss
the ToR-to-ToR-level routing scheme, which cleverly exploits
such parallelism of Shufflecast topology to support multiple
one-to-all multicasts simultaneously at line-rate.

2) Topological Properties: The unique topology of Shuf-
flecast has some highly desirable properties such as high
scalability and bounded latency.

Scalability and port counts: Shufflecast topology can scale
to an arbitrary network size (N = kpk) with small splitter
fan-out (p), by increasing the parameter k (independent of
power-splitting limitations). The number of columns scales
linearly (k) and the number of rows scales exponentially (pk).
At first glance, each ToR needs 1 transmit and p receive
ports. However, one transmit and one receive port can be
simultaneously handled by one transceiver in practice, which
leads to p transceiver ports consumed per ToR. For example,
a 2, 2-Shufflecast can accommodate 8 ToRs. Similarly, a
2, 3-Shufflecast (Fig. 9 in A-A1) scales to 24 ToRs. Both these
instances only require 2 transceiver ports per ToR.

Hop counts: Leveraging the topological properties of Shuf-
flecast, routing can be performed with low worst-case hop
count (∝ logp N ≈ k).

Lemma 1: For a p, k-Shufflecast all the ToRs are reachable
from a given source by at most 2k − 1 hops.

Intuitively, we generate the multicast tree along the
splitter-based connectivity from any given source ToR, and
all other ToRs can be reached from the source column within
two complete traversals. For example, in 2, 2-Shufflecast of
figure 2, multicast packets from ToR 0 can reach ToR 4 and
5 in 1st hop. At 2nd hop, ToR 4 relays these packets to ToR 1,
and ToR 5 relays to ToRs 2 and 3. During the second traversal,

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1974 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Algorithm 1 Next-Hop Relay Computation Algorithm

1: src = cs, rs
k−1 . . . rs

1r
s
0, dest = cd, rd

k−1 . . . rd
1rd

0

2: cur = c′, r′k−1 . . . r′1r′0
3: if cd == c′ then
4: X = k
5: else
6: X =

(
k + cd − c′

)
mod k

7: end if
8: if (X == k) OR (rd

k−1 . . . rd
X == r′k−X−1 . . . r′0) then

9: next = (c′ + 1) mod k, r′k−2 . . . r′0rd
X−1

10: else
11: X ′ = (k + c′ − cs) mod k
12: next = (c′ + 1) mod k, r′k−2 . . . r′0rs

k−X′−1

13: end if

either of ToR 1 or 3 can relay the packets to ToRs 6 and 7 in
3rd hop. Therefore, the maximum hop count is 3. A proof is
given in Appendix A-A3.

3) Multicast-Aware Routing: To multicast packets from
a source, every ToR along the path needs to know
whether packets should be relayed via its optical splitter.
Our multicast-aware routing provides static ToR-to-ToR-level
relaying rules that depend only on the source ToR ID, without
needing runtime switch reconfigurations. Separately, ToR-to-
server forwarding is dynamically configured based on the
multicast group as needed by the applications.

The objective of the multicast-aware routing is to maximize
the utilization of disjoint one-to-all multicast trees exploiting
the degree of parallelism of the Shufflecast topology. Algo-
rithm 1 illustrates next-hop relay computation. It takes the
source (src), destination (dest) and current (cur: initialized
to src) ToR IDs as input (lines 1 and 2), and computes the
next-hop (next) ToR ID which acts as the relay for routing
packets from that source towards the given destination. At a
high level, the algorithm determines whether the destination
ToR is reachable from the source ToR during the first traversal
or second traversal cycle. Accordingly, it finds the next-hop
(next) ToR ID by shifting the current ToR’s row-ID to the
left by one digit; and putting pre-calculated row-ID digit from
either destination or source ToR ID as a least significant digit
(lines 9 and 12). As shown in Fig. 3, we calculate all routes
and relay sets for multicast sources ToR-0 (0, 00) and ToR-3
(0, 11) of 2, 2-Shufflecast using Algorithm 1.

The routing algorithm enables any source ToR to perform
one-to-all multicast while choosing the relays from each
column in a compact manner. More specifically, a given source
ToR uses the subset of relay ToRs from each column which
belong to the partition IDs defined by the source row-ID
digits, termed as partition criteria. Such selective inclusion
of relays ensures the maximal utilization of the Shufflecast
topology, which we generalize in the next section. As shown
in Fig. 3, ToR 0(0, 00) and ToR 3(0, 11) in 2, 2-Shufflecast
relay through partition IDs 0 (ToRs 0, 1 and 4, 5) and partition
IDs 1 (ToRs 2, 3 and 6, 7) of both the columns respec-
tively, maintaining the partition criteria. As a consequence,
ToRs 0 and 3 have disjoint relay sets and they can perform
one-to-all multicasts simultaneously at line-rate.

Fig. 3. Relay sets for ToR-0 and ToR-3 in 2, 2-Shufflecast.

4) Routing Properties: Shufflecast has the ability to exploit
all degrees of network parallelism, with careful choices of
relay ToRs, enabling high multicast performance. Next, we for-
mally state the properties of multicast-aware routing with high
level insights. All the proofs are in Appendix A-A3.

Lemma 2: Using the multicast-aware routing for a p, k-
Shufflecast, any given source ToR can perform one-to-all
multicast following the partition criteria i.e., using the relays
from each column belonging to the partition IDs predefined
by its k row-ID digits.

The intuition is from the construction of next-hop relay
computation algorithm. For computing the next-hop relay ToR
ID, the algorithm 1 carefully uses pre-calculated source or
destination ToR row-ID digits. Eventually, those source ToR
row-ID digits govern the partition for choosing the relays.

Lemma 3: Using the multicast-aware routing for a
p, k-Shufflecast, p ToRs in one column can perform one-to-
all multicasts simultaneously at line-rate, 2p ToRs at half of
line-rate, 3p ToRs at one-third of line-rate, and all pk ToRs in
one column at pk−1 fraction of line-rate.

The result is directly obtainable from Lemma 2 and the
definition of partition (Sec. III-A1). Multicast-aware routing
effectively exploits all degrees of network parallelism.

Lemma 4: Multicast-aware routing is optimal in terms of
minimizing the relay usage and maximizing the number of one-
to-all simultaneous multicast at line-rate.

The first part of this lemma is directly obtainable from
Lemma 2 and properties of partition discussed in Sec. III-A1.
Any given source ToR uses one partition of relays from
each column by multicast-aware routing, which indeed is the
minimum number of ToRs required to reach all the ToRs in
the next column. Further, the second part of this lemma is
obtainable by extending this intuition along with Lemma 3.

B. Control Plane

We assume that ToR switches support direct control of for-
warding rules (e.g., OpenFlow or P4 switches). These switches
identify and forward the multicast packets sent by applications
(IP datagrams with Class D destination addresses).

1) Static ToR-to-ToR Relaying: For a given instance of
Shufflecast, we need to apply the relay computation algorithm
for each multicast source ToR once to obtain the list of relays
on the routes towards all destination ToRs. Then we insert one
forwarding rule on these relay switches in regard to that source
ToR. With these relay forwarding rules, data can flow from a
source to all other ToRs through the designated relays. As the
forwarding rules can be precomputed, they can be pre-installed
on the ToR switches, eliminating the need for computing
routes at runtime. Moreover, the number of such fixed rules

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1975

are not significant compared to the memory capacity of
modern switches. As discussed in Sec. III-A1, each ToR in a
p, k-Shufflecast needs to install kpk−1 fixed forwarding rules
as it relays multicast packets for kpk−1 source ToRs. For
example, a 4, 4-Shufflecast covering 1024 ToRs needs only
256 static forwarding rules to install on each ToR where
the modern OpenFlow-based SDN switches can accommodate
more than 10k rules. Hence, the scheme is highly scalable.

2) Application-Directed ToR-to-Server Forwarding: We
enable dynamic ToR-to-server forwarding rule update based
on application defined multicast server group membership. All
the ToRs are managed by a logically centralized controller. The
application interacts with the switches via the controller. When
the application starts, one of its processes proactively sends
the multicast group membership configuration request to the
controller and waits for its response. Then the controller iden-
tifies the active servers (of that multicast group) under each
ToR switch, converts them into corresponding multicast rules
(capable of forwarding incoming packets to multiple ports
simultaneously) and install those rules on the switches. Finally
the application proceeds after getting the acknowledgement
from the controller. By doing so, multicast data is confined
to only the servers who belong to the respective multicast
group defined by the application, which avoids unnecessary
contention.

C. Failure Handling

Fault tolerance is another important consideration for archi-
tecture design. Next, we discuss data and control plane failure
handling of Shufflecast in detail.

1) Data Plane Failure Handling: The primary sources of
the Shufflecast data plane failure are bad optical transceiver,
bent fiber, damaged splitter and dirty connector [67]. We con-
sider any such component failure as a complete failure of the
associated relay. We discuss the performance impact of single
relay failure and our re-routing algorithm to get around such a
failure, as correlated multiple relay failures would be relatively
rare.

Reachability impact of single relay failure: First we
model the reachability impact of single relay failure on
p, k-Shufflecast. Fig. 4 illustrates different reachability scenar-
ios for an example case and provides the intuition to formulate
the general case. Consider when ToR relay number 8 fails in
a 2, 3-Shufflecast (Fig. 9 in A-A1). As shown in Fig. 4, there
are six configurations ((a)-(f)) showing unique locations of the
failed relay 8 on one-to-all multicast trees of different source
ToRs. All these multicast trees have similar structure; a major
spine consisting of three (i.e., k) ToRs with source ToR as
the root and one perfect binary (i.e., p = 2) subtree (defined
as islands) of height three (i.e., k), hanging from each ToR
in the spine. As we vary the source ToR, the location of the
failed relay on the multicast tree varies (24 different locations
for 24 possible sources) and correspondingly that leads to
one of these six configurations along with certain number of
unreachable ToRs.

Configuration (a) shows the case where the failed relay 8 is
a leaf in island 1, i.e., ToR 8 does not relay the multicast packet
for that source and there are 12 such leaf locations across three

Fig. 4. Different reachability scenarios when relay 8 fails in a
2, 3-Shufflecast. configurations (a)-(f) illustrates the unique locations of the
failed relay (i.e. ToR 8) on one-to-all multicast trees considering different
source ToRs.

islands. Hence, there are 12 source ToRs for which there will
be no impact on reachability if relay 8 fails. In configuration
(b), the failed relay 8 is located at one-level above the leaf in
island 1, i.e., ToR 8 relays the multicast packet to two (i.e.,
p) other non-relay ToRs (leafs). As there are 6 such possible
locations across the three islands, there exists 6 source ToRs
which can’t send multicast data to 2 leaf ToRs (marked with
dashed contour) if the relay 8 fails. Similarly in configuration
(c), the failed relay 8 is the root of island 1. Hence the number
of unreachable ToRs is 6 (i.e., p + p2) and 3 source ToRs will
have such impact, as there are 3 such equivalent locations
across the islands.

Next, in configurations (d)-(f), the failed relay 8 is located
on the major spine of the multicast tree. As these locations
are unique, there is a unique source associated with each of
these cases. Specifically in configuration (d), the source ToR
is 16 and the failed relay 8 is at the lowest level of the spine.
Hence, ToR 16 can’t send multicast data to all 7 (i.e., pk− 1)
ToRs in island 3. Similarly in configuration (e), all the ToRs
in island 2 and 3 along with the lowest relay of the spine
(i.e., total 2pk − 1 = 15) are unreachable from the source
ToR 0. Finally, configuration (f) shows the trivial case where
failed relay 8 is the source i.e., root of the multicast tree.
Hence, all kpk − 1 = 23 other ToRs are unreachable from
ToR 8. Extending this idea, we compute the distribution of
reachability impact of single relay failure on p, k-Shufflecast,
which we further evaluate in Sec. VI-C.

Single relay failure recovery: For p, k-Shufflecast, a given
ToR in any column is directly connected from p ToR relays
(one from each partition) of the previous column. For example,
in 2, 3-Shufflecast (Fig. 9 in A-A1), ToR relays 0 (0, 000) and
4 (0, 100) are situated at 0th location of partition IDs 0 and
1, respectively, and both are connected to ToR 8 (1, 000).
We define these ToR relays as “mirrored relays,” where their
row-ID digits are the same except the most significant digit
which dictates the partition. Note that there exist more than
one path to reach a set of ToRs from a given source, allowing
Shufflecast to reroute packets upon relay failure. Algorithm 2
shows how to handle a single relay failure for p, k-Shufflecast.
Depending on the failed relay ToR ID, we need to deactivate

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1976 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Algorithm 2 Single Relay Failure Recovery Algorithm
1: failedrelay = c, rk−1rk−2 . . . r1r0

2: y = (rk−1 + 1) mod p
3: mirrorfailed = c, yrk−2 . . . r1r0

4: Deactivate all relaying rules on failedrelay

5: Activate all failedrelay rules on mirrorfailed

6: precedentrelay = (c− 1) mod k, r0y . . . r2r1

7: y′ = (r0 + 1) mod p
8: mirrorprecedent = (c− 1) mod k, y′y . . . r2r1

9: for i← 1 to (k − 1) do
10: ni = (c− i) mod k, ri−1 . . . r0rk−1 . . . ri � Circular

right shift of failedrelay row ID by i positions
11: Deactivate relaying for ni on precedentrelay

12: Activate relaying for ni on mirrorprecedent

13: end for

some relaying rules on two specific ToR relays (including
the failed relay) and activate those on two other ToR relays,
regardless of network size.

We explain the algorithm using the example below. Consider
a 2, 3-Shufflecast, where relay 8 (1, 000) fails (failedrelay)
and source 0 (0, 000) needs to perform one-to-all multicast.
Based on Algorithm 2, the four specific ToRs are marked
in Fig. 5, for which the relay rules will be affected. All
relaying rules on failed relay 8 are deactivated and its mir-
rored relay 12 (1, 100) (mirrorfailed) activates those rules
on its behalf (lines 1-5). Additionally, the precedent relay
2 (0, 010) (precedentrelay) deactivates the relaying rules of
a subset of source ToRs and it’s mirrored relay 6 (0, 110)
(mirrorprecedent) activates those rules (lines 6-12).

Note that, only activating the relay rules on mirrorfailed

on behalf of failedrelay is not enough. Because, after the
first traversal cycle through all the columns, packets from
ToR 0 can only reach to the ToRs of partition ID 1 (ToRs
4, 5, 6 and 7) at its own column; the ToRs from its own
partition ID 0 (i.e., ToRs 1, 2 and 3) have not received them
yet. Unfortunately, none of those relays from partition ID 1 can
forward the packets as per the routing rule. Similar situation
happens for source 16 (2, 000) too. Specifically, the relay 12
(mirrorfailed) cannot get the packets from its designated
precedent relay 2 (precedentrelay). Hence, relaying of source
0 and 16 (n1 and n2 respectively, at line 10 inside the loop)
are deactivated on relay 2, while relay 6 (mirrorprecedent)
activates those rules on its behalf. Now, ToR 0 can successfully
perform one-to-all multicast, where the outgoing links from
newly activated relays are marked with darker arrows and
all other required links are marked with lighter arrows. Thus,
Shufflecast can recover 100% reachability from a relay failure
(except for the servers under the ToR of the failed relay can no
longer be multicast sources) by re-routing packets. Moreover,
such failure recovery results in graceful performance degrada-
tion, evaluated in Sec. VI-C.

Note that our single relay failure recovery algorithm is
general enough to handle many concurrent failures. Each
relay failure is treated independently and the algorithm
turns on and off appropriate relays accordingly. In gen-
eral, a p, k-Shufflecast can always handle any concurrent

Fig. 5. Failure recovery in a 2, 3-Shufflecast when ToR 0 needs to make a
one-to-all multicast while ToR 8 fails.

failure involving less than p ToRs. However, the reachabil-
ity may not be restored for some failures involving p or
more relays if all the p mirrored relays in one column fail.
The probability of such a failure event involving p relays is
k · pk−1

(k·pk

p)
, which decreases rapidly with the size of the network.

2) Control Plane Failure Handling: Controller failure does
not affect ToR-to-ToR forwarding in Shufflecast, as those
relaying rules are static and pre-installed offline. However,
it affects the server-level multicast group membership config-
uration, as Shufflecast still needs dynamic application-directed
ToR-to-server forwarding update at runtime. To handle such
controller failure, the logically centralized controller can be
realized as a small cluster of controllers, where one can act
as primary controller and others can be as backup controllers.
When the primary controller fails, a backup controller can be
elected as the leader, which can be used by the application for
runtime switch configuration.

IV. DISCUSSIONS

In this section, we discuss several practical advantages in
the Shufflecast architecture.

A. Leveraging Idle Edge Bandwidth

Shufflecast can potentially leverage idle edge bandwidth, as
often there exists unused switch ports at ToRs due to design
constraints on space, power, and network oversubscription.
This observation is first made by recent works [20], [23],
[45] and confirmed by large network operators we consulted.
Additionally, we conduct an analysis to quantify the likelihood
of unused ToR ports (details in Appendix A-B). We consider
a wide range of network configurations. The results show that
unused ports, as well as a large amount of unused bandwidth,
often exist. The existence of 2+ unused ports and 100 Gbps
of unused bandwidth can be seen in nearly 79% and 73%
of the cases, respectively. Under 1:1 oversubscription (o/s),
54% of cases have at least 10 unused ports and 500 Gbps
of unused bandwidth. We also observe that the likelihood of
having unused ports do not correlate with o/s ratios, rack
sizes, and server port speeds etc., indicating that unused
ports can exist throughout the continuum of configuration
choices.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1977

B. Simplifying Network Management

Shufflecast incurs very little need for runtime switch con-
figurations as it uses static optimal ToR-level routing rules.
Except for the forwarding behaviors to end hosts at the ToRs,
all ToR-to-ToR forwarding rules are precomputed and pre-
installed on switches. These preconfigurable and static switch
actions make Shufflecast much less prone to configuration
errors, which is the primary source of network management
complexities. In addition, the physical wiring of Shufflecast
is easy to deploy. For a p, k-Shufflecast topology, the optical
transceivers and splitters are co-located at the ToRs, meaning
that we only need to install p incoming and outgoing optical
fiber cables. In terms of wiring, the mapping from the logical
ToRs to physical ToR locations is based on the logical column-
wise placement, bundling fibers across partitions. Also, most
physical wiring is between the adjacent physical rows of racks,
and the length of fibers would not incur significant attenuation
(0.36 dB/km at 1310 nm [6]).

C. End-to-End Reliability

Shufflecast is dedicated to multicast traffic and leverages
optical splitters to enable physical-layer multicast. Below we
concretely argue how Shufflecast can ensure reliability from
different aspects.

a) Physical layer reliability: Typically, the chances of
packet loss in the optical devices are extremely rare. The
optical transceivers have bit-error rate less than 10−12. Even
though passive optical splitters have insertion loss, the optical
link can be made completely lossless when choosing compati-
ble optical transceivers with a feasible power budget (Table I).
Moreover, as shown in Sec. III-C, Shufflecast can gracefully
handle and reroute traffic in presence of single relay failure.
Hence, Shufflecast has inherent physical layer reliability.

b) Higher layer reliability: In presence of multiple appli-
cations, the occasional packet losses in Shufflecast links can be
handled by transport layer solutions such as NORM [4], an off-
the-shelf reliable multicast protocol enabled with congestion
control [58], [59]. As shown in Sec. VI-B, Shufflecast can
handle concurrent multicast applications using NORM with
high reliability. Additionally, multiple applications can also
coordinate based on the explicit knowledge of the topology,
static relaying pattern and design capacity of Shufflecast
network. For example, two applications can inject multicast
traffic simultaneously at line-rate if they use disjoint partitions
of Shufflecast; otherwise, they can take turn at line-rate based
on their arrival time (FCFS) if they have common relays, thus
maximizing the network utilization and minimizing packet
losses between ToR-to-ToR links.

V. IMPLEMENTATION

We implement a prototype of 2, 2-Shufflecast in our testbed.
Our setup uses 3 OpenFlow switches, 8 optical splitters (1:2),
and 16 servers. We divide logically 2 OpenFlow switches to
emulate 4 ToR switches each, and 2 servers are connected
to each logical ToR. We wire the Shufflecast network using
optical splitters on these 8 logical ToR switches. The 3rd

OpenFlow switch is used for comparative evaluation, it con-
nects to the logical ToRs, creating a 2-layer full-bisection
bandwidth network across ToR switches and emulating a
non-blocking network core. Each server has 6 3.5GHz CPU
cores with 12 hyperthreads and 128 GB RAM. All connections
are 10 Gbps Ethernet. To minimize the number of ports
used, while wiring the 2, 2-Shufflecast, at each logical ToR
switch we connect the outgoing fiber (to its own splitter)
and one of the 2 incoming fibers (from 2 other splitters) to
a single transceiver port. Thus, each logical ToR consumes
only 2 transceiver ports (optimal for 2, 2-Shufflecast). The
forwarding rules are installed on the switches using the Ryu
OpenFlow controller [5], running on one of the servers.

The controller program consists of two parts. The first
part runs Algorithm 1 (Next-hop relay computation algorithm)
and pre-installs the static ToR-to-ToR forwarding rules for
2, 2-Shufflecast (<100 lines of python code). The second
part translates application-based multicast group membership
information into the ToR-to-server multicast rules and installs
them on the switches at runtime (<30 lines of python code).
We make simple modifications to applications to interact with
the controller program (≈10 lines of C++ code).

VI. EVALUATION

In this section, we present comprehensive testbed experi-
mental results to demonstrate that Shufflecast can achieve a)
line-rate multicast throughput with low power consumption
and capital cost, b) high end-to-end reliability while supporting
concurrent multicast groups, c) high robustness against single
relay failure and graceful performance degradation after failure
recovery and d) improved application performance for both
high-bandwidth and low-latency applications.

A. Shufflecast Achieves Line-Rate Multicast Performance
With Low Power Consumption and Capital Cost

We perform experiments and analysis to evaluate the multi-
cast performance of Shufflecast. Also, our analysis shows that
Shufflecast is power and cost efficient across network scale.

a) Multicast performance of Shufflecast vs. state-of-the-
art multicast mechanisms: For comparing throughput, our
baseline mechanisms are state-of-the-art multicast solutions
i.e., 1) peer-to-peer mechanisms such as MPI_Bcast [8] and
Spark-Cornet [25] and 2) IP-multicast. For both the baselines,
we use full-bisection bandwidth network to measure their ideal
maximal performance.

We perform a 1:15 multicast with varying data size (from
200 MB to 1.4 GB) and measure the multicast reading time
(i.e. the duration between receiving program issues reading
request and finishes reading it). Fig. 6(a) shows the multicast
throughput (averaged over 10 runs) defined as the ratio of
multicast data size to multicast reading time. We observe
that Shufflecast achieves line-rate multicast throughput, same
as the upper-bound performance of IP-multicast (over full-
bisection bandwidth network), irrespective of the multicast
group size. We also observe that, even without any competing
traffic on full-bisection bandwidth network, both MPI_Bcast
and Spark-Cornet achieve the multicast throughput only upto

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1978 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Fig. 6. (a) Throughput (averaged over 10 runs) for different multicast mechanisms (Shufflecast, IP-multicast and peer-to-peer overlay) across different data
size for a 1:15 multicast flow. Shufflecast achieves the line-rate multicast performance, (b) Improvement in power consumption (ratio of baseline power
consumption to that of Shufflecast) per one-to-all multicast tree of Shufflecast compared to peer-to-peer overlay (on optical circuit-switched network core) and
IP-multicast (on minimal layer packet-switched network core) with scale. The improvement factor is the same across different data rates (10 Gbps, 25 Gbps,
100 Gbps), as it only depends on the relative count of switch ports (same as transceivers), (c) Improvement in capital cost per (ratio of baseline capital cost to
that of Shufflecast) one-to-all multicast tree of Shufflecast compared to IP-multicast (on minimal layer packet-switched network core) with scale at different
data rates (10 Gbps, 25 Gbps, 100 Gbps), (d) Practical and theoretical average multicast throughput per group with varying number of concurrent multicast
groups on Shufflecast, (e) Throughput (averaged over 10 runs) of multicast flows launched in a staggered way on Shufflecast.

35% and 20% of the line-rate throughput across data size,
which is far from optimal.

In Spark-Cornet, a node first locates a block of data it needs
from another node then performs a block transfer. We observe
that although each individual block transfer can reach near
line-rate throughput, far more time is taken up by control
communications to locate and wait for data blocks, which
becomes the bottleneck for overall throughput. MPI_Bcast
adopts different approaches based on multicast data size
[8], [13]. For comparatively smaller data size, MPI_Bcast
uses binomial tree approach. In the first round, the multicast
sender process sends data to one receiver. In the second round,
these two processes send the same data to one additional
receiver each and so on. For the medium and bigger data
sizes, MPI_Bcast adopts scatter + altogether approach. The
altogether is realized by recursive doubling or ring algorithm,
where the data is pipelined from one node to the next. In this
case, the software handling of data from input to output and
the need to ensure reliability across the pipeline become the
bottleneck for overall throughput.

We consider the case of a 64 byte packet to compare
Shufflecast and IP-multicast architectures in terms of average
latency for a one-to-all multicast. Commercial 100 Gbps
packet-switches have forwarding delay of at most 1 microsec-
ond. The propagation delay for a 100m fiber link is
0.5 microsecond. The transmission delay for a 64 byte packet
at 100 Gbps is 0.005 microsecond. Thus, the approximate
per-hop latency is at most 1.505 microsecond. In our analysis,
we choose the number of ToRs in such a way that it can be
realized with some instance of p, k-Shufflecast having p <= 8,
e.g., 50 ≡ 5, 2-Shufflecast, 128 ≡ 8, 2-Shufflecast and so on
upto 1024 ≡ 4, 4-Shufflecast. Note that, if the number can be
realized by more than one Shufflecast instances, we choose
the specific instance with the smallest k value to minimize
the hop-count. For IP-multicast, we consider the minimal-
layer packet-switched network core with identical port-count
packet switches as shown in Fig. 1. We observe that a p, k-
Shufflecast with k <= 3 has smaller average latency than
that of a minimal-layer IP-multicast network. However, for the
scenarios with k = 4, Shufflecast has slightly higher average
latency (around one per-hop latency) than IP-multicast.

b) Power consumption analysis: Shufflecast is power
efficient compared to both a) peer-to-peer overlay multicast
and b) IP-multicast. Ethernet switch ports and the optical
transceivers consume power. Passive splitters and fiber optic
cables do not consume any power. We count the number
of active switch ports and transceivers (similar methodology
as [11]) involved in one cluster-wide multicast tree for all three
network architectures.

For peer-to-peer overlay multicast on optical circuit-
switched core, we assume the lowest possible power consump-
tion, where the data propagates through a chain across all
the ToR switches at line-rate. Thus it consumes two switch
ports (with two transceivers) from each ToR (both receive
and transmit). A minimal-layer IP-multicast network (Fig. 1)
would consume excess switch ports (with same number of
excess transceivers) in addition to one port (with one trans-
ceiver) per ToR. Although for IP-multicast, the data can be
instantaneously forwarded from one port to multiple ports
in a switch, each port still needs to physically transmit the
data to other switches. Thus, more active transmissions result
in high power consumption. Finally, Shufflecast requires two
active ports (with two transceivers) on each relay ToR (both
receive and transmit) and one port (with one transceiver)
on each non-relay ToR (only receive) to realize a one-to-all
multicast tree. Shufflecast saves the number of active port
(and transceiver) usage significantly, because it needs only
one transmit port (with one transceiver) on any relay ToR to
send the data into optical splitter. Then the splitter performs
physical layer multicast without consuming power. For a
simple example, in a cluster with 8 ToRs (4-port switches),
the number of active ports to support a one-to-all multicast
(one server per ToR) will be 16, 22 and 12 for peer-to-peer,
IP-multicast and Shufflecast respectively. The corresponding
transceiver count will also be the same.

To evaluate power consumption, we vary the number of
ToRs using the methodology as given in average latency
analysis. The typical power consumption values [6] of different
Ethernet switch ports and optical transceivers are given in
Table I. For Shufflecast we consider the optical transceiver
having sufficient power budget to compensate the insertion loss
of different optical splitters. As shown in Fig. 6(b), Shufflecast

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1979

TABLE I

MOST RECENT POWER CONSUMPTION AND COST VALUES
OF DIFFERENT COMPONENTS

is 1.5−1.77× more power efficient than peer-to-peer overlay.
Note that for peer-to-peer overlay, we consider the active
power consumption only from the network. But in reality,
the power consumption will be even more because it also
involves the host peers (servers) to receive and transmit the
multicast data repeatedly. Also, Shufflecast is 1.55 − 1.85×
more power efficient than IP-multicast over the minimal-layer
packet-switched network core. The improvement factors (ratio
of baseline power consumption to that of Shufflecast) are the
same across different data rates, as it only depends on the
relative count of switch ports (same as transceivers).

c) Capital cost analysis: The deployment of Shufflecast
incurs very little extra hardware cost since the optical devices
including passive optical splitters, optical transceivers, and
fiber-optic cables are all inexpensive. For a p, k-Shufflecast,
each ToR requires one optical splitter, p optical transceivers,
p outgoing fiber cables and p switch ports. Table I summa-
rizes the most recent costs [6] of different components. The
approximate cost of a duplex single-mode fiber per 100 meter
is 37.37 USD. Given a 4, 4-Shufflecast (spanning 1024 ToRs)
with 100 meter fiber optic cable as an example, the capital
cost per ToR are approximately 487 − 1867 USD across
different data rates, which is fairly inexpensive for large
clusters. Fig. 6(c) shows the improvement in capital cost (ratio
of baseline capital cost to that of Shufflecast) per one-to-
all multicast tree of Shufflecast compared to IP-multicast (on
minimal layer packet-switched network core) with scale at
different data rates (10 Gbps, 25 Gbps, 100 Gbps). We con-
sider the necessary components involved in one cluster-wide
multicast tree for both Shufflecast (switch ports, transceivers,
splitters and fiber-optic cables) and IP-multicast (switch ports,
transceivers and fiber-optic cables) architectures. Based on our
evaluation, Shufflecast is 1.57 − 1.89× more cost efficient
compared to IP-multicast over minimal-layer packet-switched
core, across different network scale and data rates. We observe
that the improvement factor decreases slightly with higher
data rate. The reason is that switch port and transceiver costs
are data-rate dependent and start dominating the fiber cost
(data-rate independent) at higher data rate. As a result, the
higher fiber cost for IP-multicast matters less at higher data
rates. If the costs of higher speed switch port and transceiver
continue to rise while fiber/splitter cost remain constant, the
improvement factor will converge to the relative count of
switch ports (same as transceivers) i.e., 1.55− 1.85×.

B. Shufflecast Achieves High Reliability While Supporting
Concurrent Multicast Groups With Negligible Overhead

We measure the responsiveness of Shufflecast control plane
and experimentally demonstrate that Shufflecast achieves high

reliability in presence of concurrent multicast groups using
off-the-shelf transport layer solutions [4].

a) Shufflecast has highly responsive control plane:
Although Shufflecast has pre-installed static ToR-to-ToR relay-
ing rules, application-directed dynamic ToR-to-server multi-
cast forwarding rule update is required before the multicast
starts (Sec. III-B). Based on our measurement, such a multicast
rule update on a Quanta T3048-LY2R OpenFlow switch only
takes 0.6 msec. Moreover, Shufflecast controller sends parallel
requests to the ToRs simultaneously. For big data applications,
such latency is negligible compared to their multicast dura-
tions, which can easily reach tens of seconds (Sec. VI-D).

b) Shufflecast achieves high reliability while support-
ing concurrent multicast groups: We perform multicast of
2 GB data size over 2, 2-Shufflecast with a group size of
16 (1:15 multicast) using NORM [4], a well-known off-the-
shelf reliable multicast solution. NORM [4] is a NACK-based
reliable multicast protocol enabled with forward error cor-
rection (FEC) and the TCP-Friendly Multicast Congestion
Control (TFMCC) scheme [58], [59]. We vary the number
of concurrent multicast groups from 1 to 16 by running
parallel norm sessions on each destination server and invoking
the corresponding number of servers as multicast senders.
We observe that all the multicast flows get close to fair-share
throughput at steady state and the packet loss is below 0.28%.
Fig. 6(d) shows that the observed average multicast throughput
per group at steady state is almost same as the theoretical
fair-share. Therefore, the aggregate network throughput in
presence of such concurrent multicast groups is always close
to line-rate. Next, we launch 4 multicast flows (group size
is 16 and data size is 4 GB) with a progressive staggering
of 1.5 sec. Fig. 6(e) shows the individual flow throughput
and aggregate network utilization (averaged over 10 runs)
variation with time. We observe that multicast flows achieve
their fair-share quickly and the overall network utilization is
close to line-rate. Note that even when multiple sources send
data towards a common destination ToR, the performance will
still be predictable due to the following reasons. First, the
upper-bound of per-flow fair-share can be pre-computed based
on Lemma 3. Second, due to the inherent load balancing of
our multicast-aware routing, the relay usage will be evenly
distributed and there will be a low chance of a hotspot. When
feasible for an application, topology-aware placement of the
multicast sources could further improve bandwidth utilization
of the network.

C. Shufflecast Achieves High Robustness Against Single
Relay Failure and Graceful Performance Degradation After
Failure Recovery

We evaluate the reachability impact on Shufflecast under
single relay failure. We also evaluate the impact of latency
and throughput degradation of Shufflecast after enabling the
single relay failure recovery.

a) Shufflecast is robust enough against single-relay
failure: Based on our reachability analysis (Sec. III-C),
we compute the distribution of reachability impact after a
single relay failure on p, k-Shufflecast. Fig. 7(a) shows the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1980 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Fig. 7. (a) CDF of fraction of loss in reachability of Shufflecast under single relay failure. Without failure recovery, there is no reachability impact for
majority of sources performing one-to-all multicast. With failure recovery, the reachability is completely restored, (b) CDF of excess latency (in terms of max
hop count) after single relay failure recovery in Shufflecast. After failure recovery, latency is unchanged for majority of the sources performing one-to-all
multicast, (c) Average throughput degrades gracefully after single relay failure recovery in Shufflecast, with varying the number of active sources performing
one-to-all multicast.

distribution for different Shufflecast instances. We observe
that, the majority of sources does not have any impact in
reachability under a single relay failure even before enabling
the failure recovery. Also, the size of this majority increases
with bigger network scale. As shown in Fig. 7(a), for Shfflecast
instances with p = 4, p = 6, and p = 8, 75%, 83%,
and 88% of the source ToRs do not lose reachability from
a relay failure, respectively. Moreover, we also observe that
reachability is completely restored after enabling the single
relay failure recovery (Algorithm 2). Hence, Shufflecast is
robust enough against single relay failure. On the other hand,
as the IP-multicast architecture is hierarchical, the impact of a
single link failure would be much worse if a higher-layer link
fails. Moreover, the reachability cannot be restored without
physical backup switches because such a single link failure
will partition the multicast tree.

b) Shufflecast has graceful performance degradation
after failure recovery: According to Lemma 1, in a healthy
p, k-Shufflecast any source ToR can reach all other ToRs
within two complete traversals i.e., maximum hop count is
(2k − 1). Based on our analysis, after enabling the failure
recovery, the maximum hop count is unchanged for the major-
ity of sources. Also, the upper bound of maximum hop count
now becomes (3k − 1), i.e., any source ToR can reach all
other ToRs within three complete traversals in the worst case.
Fig. 7(b) demonstrates the CDF of possible increase in latency
(in terms of maximum hop count) after single relay failure
recovery for different Shufflecast instances (p = 4, 6 and
8). We observe that, after single relay failure recovery the
maximum hop count remains unchanged for 90− 95% of the
sources and the possible increase in maximum hop count is
upper bounded by k = 3.

In Fig. 7(c) we vary the fraction of active ToR sources
performing one-to-all multicast and observe the multicast
throughput degradation for different Shufflecast instances after
enabling failure recovery. For a given fraction of active
sources, we uniformly sample random set of ToRs and com-
pute the relative multicast throughput degradation of those
ToR sources between the healthy and failed network (after the
failure recovery) averaged over the samples. The throughput
for an individual ToR source is defined as the inverse of
maximum fair-share for that source in presence of other active

sources. As shown in Fig. 7(c) shows that the average multicast
throughput of Shufflecast degrades gracefully after failure
recovery and the degradation reduces with bigger network
scale. For Shufflecast instances with p = 4, 6 and 8, the
throughput degradation is upper-bounded by 25%, 16.7% and
12.5% respectively. Such graceful degradation also reflects
on the simultaneous multicast capability of Shufflecast. For
a healthy p, k-Shufflecast, p ToRs in one column, having
their set of relays from disjoint partitions, can simultaneously
perform a one-to-all multicast at line-rate. After the single
relay failure, two partitions of at least one column are shared,
so the degree of parallelism now becomes (p− 1), i.e., (p− 1)
ToRs can in parallel perform one-to-all multicast at line-rate.

D. Shufflecast Achieves Improved Application Performance
for High-Bandwidth and Low-Latency Applications

We briefly discuss three different workloads and experi-
mentally demonstrate that real-world applications can leverage
Shufflecast with only minor modifications.

a) Spark ML: Under Spark Machine Learning applications,
we focus on Latent Dirichlet Allocation (LDA), one of the
popular iterative machine learning algorithms. We use the
Spark LDA implementation [16] with the dataset of 20 News-
groups as the input corpus [44] which performs the one-to-all
multicast for the training vocabulary model (735 MB in size).
We use a cluster of 8 servers to run LDA, where the application
randomly chooses one server with four cores and 88 GB
RAM as the master, while the other seven servers with two
cores and 44 GB RAM serve as 14 slave executors. Currently,
the application uses Spark’s native multicast mechanisms like
Cornet [25] and HTTP (repeated unicasts to all receivers)
over full-bisection bandwidth network. We use an extension
to Spark that can perform multicast [53] over Shufflecast
network and compare the application performance with Cornet
and HTTP. We obtain the total multicast reading times and
application running times averaged over 10 runs, as shown
in Fig. 8(a). Shufflecast achieves 3.25× and 6.24× speedup
in multicast reading time compared to Cornet and HTTP
respectively, with corresponding improvements of 23.41% and
43.1% in overall application runtime.

b) Spark distributed database: TPC-H is a widely used
database benchmark of 22 business-oriented queries with high

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1981

Fig. 8. Application performance improvements of Shufflecast compared to native multicast mechanisms over full-bisection bandwidth network. (a) For LDA,
the speedup in multicast reading time are 3.25× and 6.24× compared to Cornet and HTTP, respectively. The corresponding improvement in application
running time are 23.41% and 43.1% (b) CDF of TPC-H multicast reading time. Shufflecast improves the distribution and achieves 2.7× and 3.5× speedup
in total multicast reading time compared to Cornet and HTTP respectively, (c) The average running time of each TPC-H query (q1 to q22) over the three
multicast mechanisms. For certain queries (e.g., 1, 4, 6, 14, 15, 22), the amount of multicast data is either very small (under 200 MB) or non-existent, so there
is no visible difference between Shufflecast, Cornet, and HTTP. However, for other queries (e.g., 9, 17, 18), the multicast data is large (5 GB). Shufflecast
improves the total query running time by 13.7% compared to Cornet and 17% compared to HTTP, (d) The latency improvements (ratio of baseline latency to
that of Shufflecast) of multicast Paxos over Shufflecast compared to unicast Paxos over full-bisection bandwidth network with one sender and varying number
of acceptors. The 90th and 99th percentile latency improvements are 2.21 − 2.93× and 1.39 − 2.13× respectively.

complexity and concurrent data modifications [3]. We run
these queries using the Spark SQL framework [24]. The
database tables are 16 GB in size overall, and the multicast
data is one of such tables with size ranging from 4 MB to
6.2 GB for the distributed database join, making a total of
48.3 GB of multicast data across queries. We compare the
performance of TPC-H with and without Shufflecast keeping
the same server configuration as Spark ML. Fig. 8(b) shows
the multicast reading time distribution of different multicast
mechanisms across all TPC-H queries (queries 1 to 22).
Shufflecast improves the distribution and gets speedup of
2.7× and 3.5× in total multicast reading time compared to
Cornet and HTTP respectively. Fig. 8(c) shows the application
running time of each TPC-H query averaged over 10 runs.
For certain queries (e.g., 1, 4, 6, 14, 15, 22), the amount
of multicast data is either very small (<200 MB) or non-
existent, showing no visible difference between Shufflecast,
Cornet, and HTTP. However, for other queries (e.g., 9, 17,
18), multicast data is large (5 GB). The improvement of total
query running time is 13.7% compared to Cornet and 17%
compared to HTTP.

c) Paxos-based consensus protocol: Paxos [36], [37] is a
consensus protocol that provides the foundation for building
distributed fault-tolerant systems. Paxos has distributed entities
called proposers, acceptors and learners. The execution of
the protocol consists of four major steps, out of which three
steps require one-to-many communications. As the messages
tend to be small, the performance of Paxos is sensitive to
latency. We run Paxos where the client repeatedly (100 times)
sends 1 Byte values to the proposer. The client sends the
next value as soon as the previous is successful, and repeats
for one hundred iterations; each iteration provides a latency
measurement. All acceptors are placed on different servers.
We run multicast-based Paxos [1] (natively leverage network-
level multicast) over Shufflecast network (no application mod-
ification required) and compare the latency with unicast-based
Paxos [2] (repeated-unicasts to realize multicast) running over
full-bisection bandwidth network, with one sender and varying
number of acceptors. Fig. 8(d) shows that Shufflecast improves

the tail latency significantly, e.g., 90th and 99th percentile
latency improvements (ratio of baseline latency to that of
Shufflecast) are 2.21 − 2.93× and 1.39− 2.13× respectively
across different number of acceptors.

VII. RELATED WORK

Recent work has explored how software-defined net-
works (SDN) can be leveraged to improve IP-multicast support
on packet-switched network (e.g. tree construction, group
forwarding state maintenance, and packet retransmissions) in
the cloud data center setting, which is related to the compute
cluster environment [18], [39]–[42], [50], [55]. Our Shufflecast
architecture directly connects the ToR switches which signif-
icantly reduces the excess resource usage. Also, shufflecast
eliminates the need for run-time ToR-to-ToR-level multicast
tree construction, group state exists only at the network edge.
There have been proposals [48], [49], [56], [57], [64] that use
a MEMS-based OCS as a connectivity substrate to construct
optical multicast trees via optical splitters. However, they are
not scalable, they cannot achieve predictable performance,
and they incur significant cost. Their scalability is limited
by the centralized OCS, which has only a few hundred
ports [17], [31], [46], and these ports need to interconnect
all ToRs and all in/out ports of optical splitters. Scalability
is further limited by the need for optical power amplification,
which is difficult and expensive when the tree gets large. The
performance predictability of these proposals is hurt by long
circuit switch configuration delays that are exacerbated by the
need to concatenate multiple optical circuits through split-
ters to form the tree. Moreover, OCS incurs significant cost
which restricts such proposals from large scale deployment.
In contrast, Shufflecast provides simple, scalable and data-rate
agnostic multicast in a more power efficient and economical
way. [61] proposes a topology that eliminates the centralized
OCS, but its scalability is inherently limited by splitter fan-out
and the entire proposal consists of only the topology design.
In contrast, Shufflecast’s topology can scale to an arbitrary size
even with a small splitter fanout and we have demonstrated the
complete system’s effectiveness using end-to-end applications.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1982 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

VIII. CONCLUSION

Optical circuit-switched (OCS) network core has several
advantages to be a potential candidate for next-generation
compute clusters. However, there is no inherent support for
multicast by such networks. Shufflecast architecture can com-
plement those high performance OCS-based core and support
data-rate agnostic multicast maintaining low power and low
capital cost. Shufflecast’s data plane is scalable and supports
line-rate throughput; its control plane is simple and respon-
sive; Shufflecast is robust enough against failure. Experiments
using a complete hardware and software prototype of Shuf-
flecast show that Shufflecast can improve the performance of
real-world applications with minor modifications.

APPENDIX A

A. Details of Shufflecast Data Plane

1) Scalability of Shufflecast Fabric: Shufflecast can scale
easily even with small fanout splitters. Fig. 9 shows
2, 3-Shufflecast consisting of 3 · 23 = 24 ToRs arranged in
3 columns connected via 1:2 optical splitters, and each column
has 23 = 8 ToRs. We can realize even bigger instances of
Shufflecast with small p. For example, 4, 4-Shufflecast uses
1:4 splitters, covering 1024 ToRs.

2) Detailed Analysis of Multicast-Aware Routing: First, the
next-hop relay computation algorithm (Algorithm 1) computes
the column-difference parameter X (<=k) between the desti-
nation ToR (dest) and the current ToR (cur: initialized to src).
If both the ToRs belong to the same column, X is considered
as k (lines 3 and 4), otherwise X (<k) is computed as stated
by line 6. From the construction of Lemma 1, we observe that
X dictates the hop count from cur to dest. If both the ToRs
belong to the same column, both X and the hop count are
k (reachable at the end of the first cycle). Otherwise, dest
is reachable either in hop count X (during the first cycle) or
k + X (during the second cycle). Next, the algorithm checks
whether the hop count from cur to dest is <=k (line 8) by
matching their partial row-ID digits (k − X most and least
significant row-ID digits of the dest and cur respectively).
Finally, the next-hop (next) ToR ID is determined by shifting
the current ToR’s row-ID to the left by one digit, and then
putting the (X − 1)th digit of the destination ToR’s row-ID
(line 9) if the condition is true, or putting the (k −X ′ − 1)th

digit of the source ToR’s row-ID (line 12) if the condition
is false, where X ′ (<k) is the column-difference parameter
between cur and src (line 11).

3) Proofs of Lemmas: Proof of Lemma 1: By construction
of a p, k-Shufflecast, any given source ToR has 1:p splitter
connecting p ToRs of the next column in 1st hop, again from
those p ToRs another p2 ToRs at two-columns ahead from
the source are reachable in 2nd hop and so on. Eventually
pk−1 ToRs belonging to one partition at previous column
of source are reachable in (k − 1) hops which is sufficient
for reaching all pk ToRs of its own column in the next kth

hop. During the second cycle, the remaining ToRs of next
column from the source are all reachable from any of the
partitions of pk−1 ToRs at source column. The same scenario
follows for all the consecutive columns during the second

Fig. 9. Connectivity of 2, 3-Shufflecast.

cycle, reaching the remaining ToRs of all the other columns.
Finally, the remaining ToRs at the previous column of source
can be reached in another (k − 1) hops. Therefore, all the
ToRs are reachable within two cycles of traversal i.e., the hop
count is at most (k + k − 1) = 2k − 1.

Proof of Lemma 2: By construction of p, k-Shufflecast, for
the destinations reachable in at most k hops (i.e., during the
first cycle), the chosen relays are at most (k − 1) hops away
from the source, with most significant digit as source row-ID
digits left shifted by at most (k − 1) places. As a result, the
relays are inherently chosen from the partition IDs defined by
the source row-ID digits. Hence, appending the pre-calculated
destination digit (rd

X−1) as the least significant digit ensures
the shortest-path next-hop relay ID following the partition
criteria. After first cycle, all the k source row-ID digits are
ignored due to k effective left shifts. Therefore, for all the
remaining ToRs reachable in the second cycle, the algorithm
ensures the partition criteria by appending the pre-calculated
source row-ID digit (rs

k−X′−1) as the least significant digit
during the first cycle. These digits govern the selective choice
of relays from proper partition IDs during the second cycle.
Hence, any given source ToR can perform one-to-all multicast
following the partition criteria.

Proof of Lemma 3: Following the partition criteria
in 2, a given source ToR (cs, rs

k−1, r
s
k−2 . . . rs

1r
s
0) in a

p, k-Shufflecast performs one-to-all multicast using relays
from its own column with partition ID rs

k−1, from next column
with partition ID rs

k−2 and so on, finally from previous column
with partition ID rs

0. We also know, each column contains p
partitions as every row-ID digit can have p distinct values
(∈ [0, p− 1]). Eventually, to perform one-to-all multicast at
line-rate, the group of source ToRs are to be chosen so that
the relays are disjoint i.e., from distinct partitions at every
column. Thus for the given source, the group of other source
ToRs from the same column must have all distinct k row-ID
digits. Intuitively, we must choose one ToR from each of
the p partitions which at least makes all the most significant
digits distinct. For example, given source ToR row-ID, if we
choose one j ∈ [0, p− 1] and perform (rs

i + j) mod p for all
i ∈ [0, k − 1], eventually we get p ToRs having all distinct k
row-ID digits and hence they can perform one-to-all multicast

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1983

Fig. 10. CDF of unused ports and unused bandwidth under all configurations
and 1:1 oversubscription ratio configuration.

simultaneously at line-rate using relays from distinct partition.
Now, if we choose two such groups of p ToRs, effectively
we have two ToRs from each of the p partitions. Thus, for
each of the k places, there exist two unique ToRs using the
same digit twice a given place which results them uniquely
sharing the relays from same partition. Hence, those 2p ToRs
can make one-to-all multicast simultaneously at half of the
line-rate. Extending this idea, we can choose all such pk−1

groups of p ToRs i.e., all the pk ToRs of one column using
the relays from same partition and hence they can make one-
to-all multicast at pk−1 fraction of the line-rate.

Proof of Lemma 4: In a p, k-Shufflecast, every ToR of
a given column is connected to another p ToRs of its next
column, and every column has pk ToRs. Therefore, we need
at least pk−1 ToRs of a given column to reach all the
ToRs of the next column. Hence a given source ToR must
require at least pk−1 number of relays from each of the
k column to perform one-to-all multicast. In Lemma 2 we
have already proved, with multicast-aware routing any source
ToR can perform one-to-all multicast using the relays from
one partition at each column. From the definition of partition
we know, every partition has pk−1 ToRs which is the same
as the minimum relay requirement. Thus, multicast-aware
routing minimizes the relay usage. Also, we know there are
p partitions per column. Hence, with such minimum relay
requirement, maximum p sources in one column can possibly
use disjoint set of relays from every column and consequently
can perform one-to-all multicast simultaneously at line-rate.
This is indeed the number of simultaneous one-to-all multicast
supported by multicast-aware routing at line-rate as proved in
Lemma 3. Thus, multicast-aware routing is optimal in terms
of relay usage and multicast performance.

B. Analysis to Show Unused ToR Ports Often Exists

Our methodology considers a wide range of network con-
figurations. For each configuration, we choose the ToR switch
that minimizes the amount of unused bandwidth. We study
14 types of ToR switches with different port configurations
from several well-known companies. Specifically, we use 2
HP switches with either 24 × 10 Gbps ports or 48 × 10 +
4 × 40 Gbps ports, 2 Juniper switches with either 32 ×
10 Gbps ports or 48 × 10 + 4 × 100 Gbps ports, 3 Arista

switches ranging from 32 × 10 + 4 × 40 Gbps ports to 96 ×
10 + 8 × 40 Gbps ports, and 8 Cisco switches ranging from
32 × 40 Gbps ports to 64 × 100 Gbps ports. For the network
configurations, we adopt several oversubscription (o/s) ratios
reported in the literature, i.e., 1:1, 3:2, 3:1, 4:1, 5:1, 8:1,
10:1 and 20:1 [19], [28], [32], [62]. We also include a few
additional o/s ratios: x:1 where x ∈ [1, 10]. We consider
commercially available standard rack cabinet sizes ranging
from 18U to 48U [7], [9], and five different per-server network
port speed configurations – 10 Gbps, 2 × 10 Gbps, 25 Gbps,
40 Gbps and 2 × 25 Gbps. The detailed results are shown in
Fig. 10. Indeed, unused ports, as well as a large amount of
unused bandwidth, often exist. Among all cases, the config-
uration of 1:1 o/s is unique and the unused ToR ports truly
cannot be used to add more bandwidth into the network core.

ACKNOWLEDGMENT

The authors thank the editors and anonymous reviewers for
their valuable feedback. They also thank Prof. Debasish Datta
for very helpful discussions.

REFERENCES

[1] Libfastpaxos. Accessed: 2009. [Online]. Available: https://sourceforge.
net/projects/libpaxos/files/LibFastPaxos/src-rev-17/

[2] Libpaxos3. Accessed: 2013. [Online]. Available: https://sourceforge.
net/projects/libpaxos/files/LibPaxos3/

[3] (2001). TPC Benchmark H. [Online]. Available: http://www.tpc.
org/tpch/

[4] (2009). Nack-Oriented Reliable Multicast (Norm) Transport Protocol.
[Online]. Available: https://tools.ietf.org/html/rfc5740

[5] (2015). Ryu Openflow Controller. [Online]. Available: http://osrg.
github.io/ryu/

[6] (2019). Fs (Fiberstore)—Leading Communication Systems Integrator
and Optical Solutions Provider for Data Centers. [Online]. Available:
http://www.fs.com

[7] (2019). HPE—Rack Cabinet Provider for Data Centers. [Online].
Available: https://buy.hpe.com/us/en/rack-power-
infrastructure/racks/server-racks/racks/hpe-g2-enterprise-series-
racks/p/1009803311

[8] MPI Broadcast and Collective Communication. [Online].
Available: http://mpitutorial.com/tutorials/mpi-broadcast-and-collective-
communication/

[9] Server Cabinet Enclosures—Common Standard Rack Cabinet for
Data Centers. [Online]. Available: https://www.racksolutions.com/rack-
mount-enclosure.html

[10] (2020). 25 dB Gain DWDM EDFA Pre-Amplifier. [Online]. Available:
https://www.fs.com/products/107367.html

[11] H. Ballani et al., “Sirius: A flat datacenter network with nanosecond
optical switching,” in Proc. Annu. Conf. ACM Special Interest Group
Data Commun. Appl., Technol., Archit., Protocols Comput. Commun.,
Jul. 2020, pp. 782–797.

[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable applica-
tion layer multicast,” in Proc. Conf. Appl., Technol., Archit., Protocols
Comput. Commun., 2002, pp. 205–217.

[13] J. Bao, D. Dong, B. Zhao, and Z. Gong, “ICAST: Accelerating high-
performance data center applications by hybrid electrical and opti-
cal multicast,” in Proc. IEEE 23rd Int. Conf. Parallel Distrib. Syst.
(ICPADS), Feb. 2017, pp. 302–309.

[14] D. Basin, K. Birman, I. Keidar, and Y. Vigfusson, “Sources of instability
in data center multicast,” in Proc. 4th Int. Workshop Large Scale Distrib.
Syst. Middleware, 2010, pp. 32–37.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[16] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. Jermaine,
“A comparison of platforms for implementing and running very large
scale machine learning algorithms,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 1371–1382.

[17] Calient. (2019) Series Optical Circuit Switch. [Online]. Available:
http://www.calient.net

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

1984 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

[18] J. Cao et al., “Datacast: A scalable and efficient reliable group data
delivery service for data centers,” IEEE J. Sel. Areas Commun., vol. 31,
no. 12, pp. 2632–2645, Dec. 2013.

[19] Z. Cao, R. Proietti, and S. J. B. Yoo, “Hi-LION: Hierarchical large-scale
interconnection optical network with AWGRs,” J. Opt. Commun. Netw.,
vol. 7, no. 1, p. A97, Jan. 2015.

[20] R. Carlson, “Considerations for choosing top-of-rack in today’s fat-tree
switch fabric configurations,” Cabling Installation Maintenance Mag.,
vol. 21, no. 4, pp. 5–11, Feb. 2014.

[21] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “Splitstream: high-bandwidth multicast in cooperative envi-
ronments,” ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 298–313,
2003.

[22] M. Castro et al., “An evaluation of scalable application-level multicast
built using peer-to-peer overlays,” in Proc. 23nd Annu. Joint Conf.
Comput. Commun. Soc., 2003, pp. 1510–1520.

[23] A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. Rowstron,
“Larry: Practical network reconfigurability in the data center,” in
Proc. 15th USENIX Symp. Netw. Syst. Design Implement., 2018,
pp. 141–156.

[24] T. Chiba and T. Onodera, “Workload characterization and optimization
of TPC-H queries on apache spark,” in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), Apr. 2016, pp. 112–121.

[25] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” ACM
SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109,
Aug. 2011.

[26] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1456–1471,
Oct. 2002.

[27] A. Das, I. Gupta, and A. Motivala, “SWIM: Scalable weakly-consistent
infection-style process group membership protocol,” in Proc. Int. Conf.
Dependable Syst. Netw., 2002, pp. 303–312.

[28] A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the impact of packet
spraying in data center networks,” in Proc. INFOCOM, Apr. 2013,
pp. 2130–2138.

[29] R. Furrer, M. G. Genton, and D. Nychka, “Covariance tapering for
interpolation of large spatial datasets,” J. Comput. Graph. Statist.,
vol. 15, no. 3, pp. 502–523, 2006.

[30] M. Ghobadi et al., “Projector: Agile reconfigurable data center intercon-
nect,” in Proc. ACM SIGCOMM Conf., 2016, pp. 216–229.

[31] Glimmerglass. (2018). Intelligent Optical System. [Online]. Available:
http://www.glimmerglass.com

[32] A. Greenberg et al., “Vl2: A scalable and flexible data center network,”
in Proc. SIGCOMM, Aug. 2009, pp. 51–62.

[33] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” IEEE Commun.
Surveys Tuts., vol. 9, no. 3, pp. 58–74, 3rd Quart., 2007.

[34] S. Itoh, P. Ordejón, and R. M. Martin, “Order-n tight-binding molecular
dynamics on parallel computers,” Comput. Phys. Commun., vol. 88,
nos. 2–3, pp. 173–185, 1995.

[35] J. Jannotti et al., “OverCast: Reliable multicasting with on overlay
network,” in Proc. 4th Conf. Symp. Oper. Syst. Design Implement., vol. 4,
2000, p. 14.

[36] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[37] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[38] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron, H. Williams, and
X. Zhao, “XFabric: A reconfigurable in-rack network for rack-scale
computers,” in Proc. 13th USENIX Symp. Netw. Syst. Design Implement.,
2016, pp. 15–29.

[39] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang, “Scalable data center
multicast using multi-class Bloom filter,” in Proc. 19th IEEE Int. Conf.
Netw. Protocols, 2011, pp. 266–275.

[40] D. Li, Y. Li, J. Wu, S. Su, and J. Yu, “ESM: Efficient and scalable
data center multicast routing,” IEEE/ACM Trans. Netw., vol. 20, no. 3,
pp. 944–955, Jun. 2012.

[41] D. Li, M. Xu, Y. Liu, X. Xie, Y. Cui, J. Wang, and G. Chen, “Reliable
multicast in data center networks,” IEEE Trans. Comput., vol. 63, no. 8,
pp. 2011–2024, Aug. 2014.

[42] X. Li and M. J. Freedman, “Scaling ip multicast on datacenter topolo-
gies,” in Proc. 9th ACM Conf. Emerg. Netw. Exp. Technol., 2013,
pp. 61–72.

[43] W. M. Mellette et al., “RotorNet: A scalable, low-complexity, optical
datacenter network,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 267–280.

[44] T. Mitchell. (1999). 20 Newsgroups. [Online]. Available:
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

[45] Y. Ohsita and M. Murata, “Optical data center networks: Architec-
ture, performance, and energy efficiency,” in Handbook Data Centers.
New York, NY, USA: Springer, 2015, pp. 351–391.

[46] Polatis. (2016). Series 7000 Software Defined Optical Switch. [Online].
Available: http://www.polatis.com

[47] G. Porter et al., “Integrating microsecond circuit switching into the
data center,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 447–458, 2013.

[48] P. Samadi, D. Calhoun, H. Wang, and K. Bergman, “Accelerating cast
traffic delivery in data centers leveraging physical layer optics and sdn,”
in Proc. Int. Conf. Opt. Netw. Design Modeling, 2014, pp. 73–77.

[49] P. Samadi, V. Gupta, J. Xu, H. Wang, G. Zussman, and K. Bergman,
“Optical multicast system for data center networks,” Opt. Exp., vol. 23,
no. 17, pp. 22162–22180, 2015.

[50] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, “ELMO: Source routed multicast for public clouds,” in Proc.
ACM Special Interest Group Data Commun., 2019, pp. 458–471.

[51] V. Shrivastav et al., “Shoal: A network architecture for disaggregated
racks,” in Proc. 16th USENIX Symp. Netw. Syst. Design Implement.,
2019, pp. 255–270.

[52] A. Singh et al., “Jupiter rising: A decade of CLOS topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015.

[53] X. S. Sun, Y. Xia, S. Dzinamarira, X. S. Huang, D. Wu, and T. S. E. Ng,
“Republic: Data multicast meets hybrid rack-level interconnections in
data center,” in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP),
Sep. 2018, pp. 77–87.

[54] A. Thusoo et al., “Hive: A warehousing solution over a map-reduce
framework,” VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[55] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, and Y. Tock,
“Dr. Multicast: Rx for data center communication scalability,” in
Proc. 2nd Workshop Large-Scale Distrib. Syst. Middleware, 2008,
pp. 349–362.

[56] H. Wang, C. Chen, K. Sripanidkulchai, S. Sahu, and K. Bergman,
“Dynamically reconfigurable photonic resources for optically connected
data center networks,” in Proc. Opt. Fiber Commun. Conf., 2012, p. 2.

[57] H. Wang, Y. Xia, K. Bergman, T. S. E. Ng, S. Sahu, and
K. Sripanidkulchai, “Rethinking the physical layer of data center net-
works of the next decade: Using optics to enable efficient*-cast connec-
tivity,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp. 52–58,
Jul. 2013.

[58] J. Widmer and M. Handley, “Extending equation-based congestion
control to multicast applications,” ACM SIGCOMM Comput. Commun.
Rev., vol. 31, no. 4, pp. 275–285, Oct. 2001.

[59] J. Widmer and M. Handley, TCP-Friendly Multicast Congestion Control
(TFMCC): Protocol Specification, document RFC 4654, Aug. 2006.

[60] B. D. Wozniak, F. D. Witherden, F. P. Russell, P. E. Vincent, and
P. H. Kelly, “Gimmik-generating bespoke matrix multiplication kernels
for accelerators: Application to high-order computational fluid dynam-
ics,” Comput. Phys. Commun., vol. 202, pp. 12–22, Oct. 2016.

[61] D. Wu, X. Sun, Y. Xia, X. S. Huang, and T. E. Ng, “HyperOptics:
A high throughput and low latency multicast architecture for datacen-
ters,” in Proc. HotCloud, 2016, pp. 1–5.

[62] D. Wu, W. Wang, A. Chen, and T. S. E. Ng, “Say no to rack boundaries:
Towards a reconfigurable pod-centric dcn architecture,” in Proc. ACM
Symp. SDN Res., Apr. 2019, pp. 112–118.

[63] G. Wu, H. Gu, K. Wang, X. Yu, and Y. Guo, “A scalable AWG-based
data center network for cloud computing,” Opt. Switching Netw., vol. 16,
pp. 46–51, Oct. 2015.

[64] Y. Xia, T. S. E. Ng, and X. S. Sun, “Blast: Accelerating high-
performance data analytics applications by optical multicast,” in Proc.
INFOCOMM, 2015, pp. 1930–1938.

[65] M. Xu, C. Liu, and S. Subramaniam, “PODCA: A passive optical data
center network architecture,” J. Opt. Commun. Netw., vol. 10, no. 4,
pp. 409–420, 2018.

[66] T. Ye, T. T. Lee, M. Ge, and W. Hu, “Modular AWG-based interconnec-
tion for large-scale data center networks,” IEEE Trans. Cloud Comput.,
vol. 6, no. 3, pp. 785–799, Oct. 2016.

[67] D. Zhuo, M. Ghobadi, R. Mahajan, K.-T. Förster, A. Krishnamurthy,
and T. Anderson, “Understanding and mitigating packet corruption in
data center networks,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 362–375.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

DAS et al.: SHUFFLECAST: OPTICAL, DATA-RATE AGNOSTIC, AND LOW-POWER MULTICAST ARCHITECTURE 1985

Sushovan Das is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Rice University. His research interest includes novel
optical architecture design to optimize application
performance for future generation cloud infrastruc-
tures.

Afsaneh Rahbar received the Ph.D. degree from the
Department of Computer Science, Rice University.
She is currently a Research Scholar at Rice Univer-
sity. Her research interests include static analysis,
high performance computing, and data center net-
works.

Xinyu Crystal Wu (Graduate Student Member,
IEEE) is currently pursuing the Ph.D. degree with
the Department of Computer Science, Rice Univer-
sity. Her research interests include programmable
networks and distributed systems, including network
infrastructure, distributed training optimization, net-
work monitoring, and diagnose.

Zhuang Wang is currently pursuing the Ph.D.
degree with the Department of Computer Science,
Rice University. His research interests include dis-
tributed machine learning and networking systems,
including efficient distributed training, gradient com-
pression algorithms, and performance isolation in
public clouds.

Weitao Wang is currently pursuing the Ph.D. degree
with the Department of Computer Science, Rice Uni-
versity. His research interests include application-
infrastructure co-design, including congestion con-
trol, network monitoring, and network scheduling.

Ang Chen is currently an Assistant Professor with
the Department of Computer Science, Rice Univer-
sity. His research interests span networking, security,
and systems, with a particular focus on making net-
worked systems more reliable, efficient, and secure.

T. S. Eugene Ng (Senior Member, IEEE) received
the Ph.D. degree in computer science from Carnegie
Mellon University in 2003. He is currently a Full
Professor of computer science at Rice University.
His research interests lie in developing new net-
work models, network architectures, and holistic
networked systems that enable a robust and man-
ageable network infrastructure. He received the
U.S. National Science Foundation (NSF) CAREER
Award in 2005 and the Alfred P. Sloan Fellowship
in 2009.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 18,2022 at 20:11:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

