
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

Zen: Empowering Distributed Training
with Sparsity-driven Data Synchronization

Zhuang Wang, Rice University; Zhaozhuo Xu, Stevens Institute of Technology;
Jingyi Xi, unaffiliated; Yuke Wang, Anshumali Shrivastava,

and T. S. Eugene Ng, Rice University

https://www.usenix.org/conference/osdi25/presentation/wang-zhuang

ZEN: Empowering Distributed Training with Sparsity-driven Data Synchronization

Zhuang Wang∗, Zhaozhuo Xu⋄∗, Jingyi Xi†∗, Yuke Wang, Anshumali Shrivastava, and T. S. Eugene Ng
Rice University, ⋄Stevens Institute of Technology, †Unaffiliated

Abstract
Distributed training is the de facto standard to scale up

the training of deep learning models with multiple GPUs. Its
performance bottleneck lies in communications for gradient
synchronization. Although high tensor sparsity is widely ob-
served, the optimal communication scheme to fully leverage
sparsity is still missing. This paper aims to bridge this gap.
We first analyze the characteristics of sparse tensors in pop-
ular models to understand the fundamentals of sparsity. We
then systematically explore the design space of communi-
cation schemes for sparse tensors and find the optimal ones.
These findings give a new understanding and inspire us to
develop a holistic gradient synchronization system for sparse
tensors called ZEN. We demonstrate that ZEN can achieve up
to 5.09× speedup in communication time and up to 2.48×
speedup in training throughput compared to the state-of-the-
art methods.

1 Introduction

In recent years, deep learning (DL) models have achieved
remarkable empirical performance in real-world applica-
tions, such as language processing [6, 22, 32, 40, 64, 67] and
recommendation systems [26, 42]. With the ever-growing
size of models and training datasets, distributed training
has become the norm for model training with multiple
GPUs [35,47,49,59,71]. The synchronization of gradient ten-
sors from different GPUs is commonly required in distributed
training. In data parallelism [29, 35, 59], the training dataset
is partitioned across multiple GPUs, so the corresponding
gradient tensors must be synchronized to maintain model con-
sistency. In tensor parallelism [62], individual layers of a DL
model are sharded over multiple GPUs, which synchronize
the gradient tensors during backward propagation for the gra-
dient computation of subsequent layers. Furthermore, it is
common practice to train large models [17, 49, 58] with a
mix of data parallelism and other parallelism strategies, such

*These authors contributed equally.

as pipeline parallelism [28, 47], tensor parallelism [62], and
ZeRO [55, 81]. These training workloads must also synchro-
nize the gradient tensors across GPUs.

The major efficiency bottleneck of distributed training lies
in the communication for gradient synchronization [23,72,73,
80]. Recent hardware developments have greatly improved
the computation efficiency of model training. These advance-
ments increase the frequency of gradient synchronization in
distributed training and shift more burdens to network sys-
tems. However, network upgrades have not kept up with the
improvements in computation [43, 50, 51, 80], exacerbating
the tension between computation and communication.

Several communication schemes have been developed
to alleviate communication bottlenecks in distributed train-
ing by fully utilizing the network bandwidth. For example,
Ring-Allreduce [53] is provably bandwidth-optimal in ho-
mogeneous GPU clusters and it is widely used in collective
communication libraries such as MPI [18], NCCL [4], and
MSCCL [5]. BytePS [29] is a communication-optimal ar-
chitecture for heterogeneous GPU/CPU clusters. However,
both Ring-Allreduce and BytePS assume that tensors to be
synchronized are dense, ignoring their sparsity.

Recent work has shown that DL models exhibit a high
degree of tensor sparsity during gradient synchronization.
The sparsity comes from either natural gradient computa-
tion [16, 37, 42] or gradient compression sparsification algo-
rithms [7, 38, 73]. On the one hand, because model training
can focus on updating a subset of parameters instead of all
of them [24, 78], some of the gradient tensors in DL models
are naturally sparse and most of the gradients in these ten-
sors are zero. For instance, the embedding table in the widely
deployed Deep Learning Recommendation Models [70] can
reach more than 93% sparsity; Graph adjacency matrix in
Graph Neural Networks [69] usually retains the sparsity more
than 99%; Word embeddings of those popular natural lan-
guage processing models, such as NMT [40] and LSTM [44],
would achieve more than 97% sparsity. On the other hand,
to address the communication bottleneck, a plethora of spar-
sification algorithms [7, 38, 39, 60, 61, 63, 73] are proposed

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 537

Sparse Tensor
(e.g., Density)

Network Spec.
(e.g., Topology)

Zen System

Cost-Efficient
Encoding Scheme

(§)

Multi-GPU Clusters

Optimized
Sparse

Comm. Plan

Optimality-guided
Design Explore

(§)

4D Design Space
Construction

(§)

Data-independent
Hierarchical Hashing

(§)

Schem
e

Selection

Figure 1: ZEN System Overview.

to reduce synchronization traffic by selecting a subset of the
original stochastic gradients. They can save up to 99% of the
gradient exchange while maintaining model accuracy [12,39].

Leveraging the notable sparsity can significantly reduce
traffic volume for gradient synchronization and shorten the
communication time in distributed training. We can represent
non-zero gradients with a sparse format and denote the tensor
with a sparse format as a sparse tensor. Previous works, such
as AGsparse [35], SparCML [56], and OmniReduce [23], have
acknowledged this potential. They use various sparse formats
and synchronization schemes. However, these approaches do
not fully consider the fundamental characteristics of sparsity
in DL models and lack understanding of the optimal scheme,
resulting in suboptimal communication performance for gra-
dient synchronization. To this end, this paper addresses the
research problem: What is the optimal communication scheme
for gradient synchronization of sparse tensors in distributed
training?

To address this question, it is essential to revisit the fun-
damentals of the tensor sparsity in DL models. We first
unveil the characteristics of sparse tensors in popular mod-
els [22, 26, 30, 40, 65, 79] across GPUs, iterations, and diverse
training workloads. We then explore locations and distribu-
tions of non-zero gradients in tensors and the changes ob-
served in sparse tensors before and after aggregation under
varying configurations.

In light of these characteristics of sparse tensors, we system-
atically explore the design space of synchronization schemes
for sparse tensors. Four elemental dimensions are proposed,
including communication, aggregation, partition, and bal-
ance, to construct diverse synchronization schemes, revealing
that existing schemes [23, 35, 56] can be described within
this framework. This leads to a proof of the existence of
communication-optimal schemes to synchronize sparse ten-
sors in distributed training.

Based on these findings, we develop a sparse gradient syn-
chronization system, called ZEN (Figure 1), which achieves
a near-optimal communication time. Specifically, ZEN takes
the tensor sparsity and network specification as input and
pinpoints the optimized sparse communication plan as out-
put. Our key design insight lies in framing the challenge of
achieving optimal schemes as a mathematical problem. We
propose a data-independent solution to address this challenge,
eliminating costly data-dependency overhead. This solution

Table 1: Three DL models with natural tensor sparsity.

Model MLP Size Embedding Size Embedding Density
LSTM [44] 20M 406M 1.13%

DeepFM [26] 68M 214M 2.80%
NMT [40] 31M 112M 2.47%

Table 2: Configurations of three LLMs. AH: attention heads.

Model Hidden size Intermediate #Layers #AH
Llama3.2-3B [22] 3,072 8,192 28 24

OPT2.7B [79] 2,560 10,240 32 32
Gemma2-2B [65] 2,304 9,216 26 8

achieves high efficiency by introducing a novel hierarchi-
cal hashing algorithm that attains superior performance on
GPUs while ensuring provably near-optimal results without
any information loss. ZEN also incorporates an efficient en-
coding scheme to minimize index representation overhead,
irrespective of the random distribution of non-zero gradients
after applying the hierarchical hashing algorithm. We evaluate
ZEN across various DL training workloads, where tensor spar-
sity arises from natural computation or gradient compression.
ZEN achieves up to 5.09× speedup in communication time
and up to 2.48× speedup in training throughput over existing
methods for sparse tensor synchronization.

The key contributions of this paper are as follows.
• We analyze the characteristics of sparse tensors in popu-

lar DL models to reveal and understand the fundamentals
of gradient sparsity in distributed training.

• We systematically explore the design space of sparse
communication schemes and pinpoint the optimal ones.

• We develop ZEN, a gradient synchronization system for
sparse tensors that achieves near-optimal communica-
tion time using a data-independent hierarchical hashing
algorithm and an efficient encoding scheme.

• Evaluation reveals that ZEN achieves evident throughput
improvement compared to the state-of-the-art methods
across diverse training workloads.

2 Analysis of Sparse Tensor Synchronization

2.1 Characteristics of Sparse Tensors
This section analyzes the characteristics of sparse tensors
from both natural gradient computation and sparsification al-
gorithms. For natural tensor sparsity, we will study the gradi-
ent tensors from the embedding layers of the three DL models
listed in Table 1. For the tensor sparsity from gradient com-
pression, we will study three large language models (LLMs)
listed in Table 2 and apply DGC [39], one of the most pop-
ular sparsification algorithms, to select the top 5% gradients
from their gradient tensors [8,27]. Detailed workloads for the
models can be found in §5.1.

538 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) (b)

Figure 2: The characteristics of sparse tensors in DL models.
(a) shows that the overlap ratio of sparse tensors varies; (b)
shows that tensors have higher density after aggregation.

Definition 1 (Dense tensor). We define the original gradient
tensor in a DL layer as a dense tensor.

We define density of a gradient tensor as the percentage
of its non-zero gradient values. We can represent a gradient
tensor in a sparse format when many parameters have zero
gradients. A typical sparse format is coordinate lists (COO)
that store a list of non-zero gradients and a list of the corre-
sponding indices [23, 77].

Definition 2 (Sparse tensor). We define a gradient tensor in
a sparse format as a sparse tensor.

We denote the size of a dense tensor G by M, its density
is dG, and the training involves n nodes. For simplicity, we
assume that each node has only one GPU in this section.
C1: The overlap of sparse tensors varies. Similar to dense
tensors, sparse tensors are aggregated during synchroniza-
tion. When aggregating dense tensors, the indices of gradients
from different GPUs are identical. However, due to different
batches as input for training on different GPUs, the indices of
non-zero gradients in a sparse tensor are unknown a priori.
They can have overlaps, but how much they overlap depends
on many factors, such as the DL model, the training dataset,
and the batches. We define the overlap ratio [68] to quantify
this overlap between two sparse tensors.

Definition 3 (The overlap ratio). Given two sparse tensors
and their sets of indices for non-zero gradients are I1 and
I2, respectively, their overlap ratio is defined as |I1∩I2|

min{|I1|,|I2|} ,
where | · | is the cardinality of a set.

Figure 2a shows the probability density function (PDF)
of the overlap ratios for the six DL models studied in the
paper. The overlap ratio in a model is approximately normally
distributed, and it is in a wide range. In addition, different
models have different distributions of overlap ratios.
C2: The tensor size after aggregation varies. When aggre-
gating dense tensors, the tensor sizes before and after aggre-
gation remain the same. However, when aggregating sparse
tensors, the unknown overlaps of sparse tensors lead to vary-
ing tensor sizes after aggregation. Because the aggregation
involves sparse tensors from multiple GPUs, we denote dn

G as

(a) (b)

Figure 3: The distribution of non-zero gradients is skewed.
(a) The heatmap of non-zero gradients distribution; (b) The
skewness ratio.

Communication pattern

P3

P1 P3

P0 P1 P2 P3

P1

P2

P0

P3 P1

P2

P0

P3

(a) Ring

Communication pattern

P3

P1 P3

P0 P1 P2 P3

P1

P2

P0

P3 P1

P2

P0

P3

(b) Hierarchy

Communication pattern

P3

P1 P3

P0 P1 P2 P3

P1

P2

P0

P3 P1

P2

P0

P3

(c) Point-to-point

Figure 4: An illustration of three communication patterns
with four GPUs. GPU P3 aggregates the data from all GPUs.

Communication pattern

P3

P1 P3

P0 P1 P2 P31.2 0.7 0.3 2.5

1.9 2.8

4.7

P3

P1 P3

P0 P1 P2 P31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

(a) Incremental aggregation.

Communication pattern

P3

P1 P3

P0 P1 P2 P31.2 0.7 0.3 2.5

1.9 2.8

4.7

P3

P1 P3

P0 P1 P2 P31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

(b) One-shot aggregation.

Figure 5: An Illustration of two aggregation patterns with
Hierarchy. The gradients on each GPU are from the same
parameter and 4.7 is the final aggregated result.

the density after the aggregation of tensors from n GPUs. We
observe that sparse tensors get denser after aggregation. We
define the densification ratio to quantify this characteristic.

Definition 4 (The densification ratio). Given a dense tensor
G, its densification ratio is defined as γn

G =
dn

G
dG

.

Figure 2b presents the average densification ratio γn
G to

the number of GPUs for the DL models studied in this paper.
The densification ratio increases with the number of GPUs,
demonstrating that tensors have a higher density after aggre-
gation. We can also see that the densification ratio is smaller
than the number of GPUs, i.e., γn

G < n. It suggests that the
indices of non-zero gradients in sparse tensors from different
GPUs are partially overlapped.

C3: The distribution of non-zero gradients is skewed.
When evenly splitting a dense tensor into multiple partitions,
we observe that most of the non-zero gradients are in one of
them. For example, with eight partitions, more than 60% of
the non-zero gradients are in the first partition in the six DL

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 539

GPU 0 GPU 1 GPU 2

Partition pattern

GPU 0
A0 A1 A2 A0 A1 A2 A0 A1 A2

GPU 1 GPU 2

A0 A1 A2

(a) Centralization

C0 B1 B2B0A0 A1 A2C1 C2

GPU 0 GPU 1 GPU 2

A2 B1 C1A1A0 B0 C0B2 C2

GPU 0 GPU 1 GPU 2

∑A ∑B ∑C

∑C∑B∑A ∑C∑B∑A ∑C∑B∑A

Partition pattern

GPU 0 GPU 1 GPU 2 GPU 0 GPU 1 GPU 2

(b) Parallelism

Figure 6: An illustration of the two partition patterns with Point-to-point. In (a), each tensor is communicated as a whole and
each GPU receives all the tensors. In (b), each tensor is split into three partitions; the same partition from different GPUs is sent
to the same place, and the aggregated results are then sent back to all GPUs.

Sparse PS

1 6 7 8 9
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 5 6 7 8 9 11 15

11 5 6 7 8 10 15 1 7 8 9 10 15

10

(a) Imbalanced communication

Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

(b) Balanced communication

Figure 7: An illustration of balance patterns with Point-to-point and Parallelism. Each GPU has six non-zero gradients and the
numbers are their indices. In (a), four gradients from each GPU are sent to GPU 1. In (b), each GPU sends two gradients to other
GPUs, and communications are well-balanced. However, it is non-trivial to achieve such balanced communications.

models. Figure 3a shows the percentage heatmap of the non-
zero gradients in each partition. We define the skewness ratio
to quantify the skewed distribution of non-zero gradients.

Definition 5 (The skewness ratio). Given a dense tensor G
and we evenly divide G into disjoint n partitions, denoted as
{G1, · · · ,Gn}, the skew ratio of G with n partitions is defined

as
maxi∈[n]{dGi}

dG
.

Figure 3b presents the skewness ratios of gradient tensors
in the DL models studied in this paper. They are significant in
all six models. For example, when we evenly split the gradient
tensor from the embedding table in LSTM into 128 partitions,
the skewness ratio is over 70. It indicates that more than half
of the non-zero gradients are in the same partition.

2.2 Elemental Dimensions for Synchronization
Synchronization for dense tensors has been extensively stud-
ied [29, 34, 59, 66]. This section will explore the design
space to construct synchronization schemes for sparse tensors.
Given a tensor, the outcome of its synchronization is that gra-
dients with the same indices are aggregated and all GPUs have
identical aggregated results. We will discuss four dimensions
that construct a synchronization scheme for sparse tensors.
Communication dimension. There are typically three
communication patterns for synchronization: 1) Ring, 2)
Hierarchy, and 3) Point-to-point. They are illustrated
in Figure 4 with an example in which there are four GPUs
and GPU P3 aggregates the data from all GPUs. In Ring, all
GPUs form a ring structure. P0 first sends its data to P1, which
then passes the data along with its own data to P2 and so on

until P3 receives all the data. In Hierarchy, all GPUs form a
hierarchical structure and P3 is the root. There are two stages
in Figure 4b. In the first stage, P0 sends its data to P1 and P2
sends its data to P3. In the second stage, P1 sends the data from
both its own and P0 to P3. In Point-to-point communication,
the other three GPUs directly send data to P3.

Aggregation dimension. A communication pattern can have
multiple communication stages and there are two options for
aggregation: 1) Incremental aggregation, i..e, aggregate
tensors at each stage; and 2) One-shot aggregation, i.e.,
only aggregate tensors from all GPUs after the last stage.
These two options lead to different amounts of traffic volume
in different communication stages because of C1 and C2 dis-
cussed in Section 2.1. In the example illustrated in Figure 4,
Ring has three stages and Hierarchy has two stages. Figure 5
displays an example with Hierarchy as the communication
pattern. When P1 receives a tensor from P0, it has two tensors.
P1 can either aggregate the two tensors and send the aggre-
gated result to P3, as shown in Figure 5a; or it can just send
the concatenated tensor to P3, as shown in Figure 5b.

Partition dimension. There are two partition patterns to en-
sure that all GPUs have the same aggregated results after
synchronization: 1) Centralization, in which each ten-
sor is communicated and aggregated as a whole; and 2)
Parallelism, in which each tensor is decomposed into mul-
tiple partitions and each partition is communicated and aggre-
gated separately. Figure 6 compares the two partition patterns
with Point-to-point as the communication pattern. With Cen-
tralization, as shown in Figure 6a, each GPU sends its tensor
as a whole to other GPUs. With Parallelism, as shown in
Figure 6b, each GPU first decomposes its tensor into three

540 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

partitions and it requires two steps for synchronization. The
first step aggregates the same partition from different GPUs
in different places and the second step ensures that all GPUs
have the aggregated results of all partitions.
Balance dimension. With Parallelism, the number of non-
zero gradients in each partition can vary. Therefore, there
are two patterns in terms of the traffic volume received
at each GPU: 1) Balanced communication, in which the
GPUs receive the same amount of data; and 2) Imbalanced
communication, in which the traffic volumes received at dif-
ferent GPUs are greatly different. Figure 7 compares the
two balance patterns among three GPUs with Point-to-point.
There are 15 gradients in the tensor and six of them are non-
zero. As shown in Figure 7a, four non-zero gradients are in
the middle partition and they are sent to GPU 1. The traf-
fic volume received at GPU 1 is 4× that received at GPU
0 and GPU 2. In Figure 7b, each GPU sends two non-zero
gradients to other GPUs and the volume among them is well
balanced. Naively partitioning a tensor can cause imbalanced
communications due to C3 discussed in §2.1.

The four dimensions describe the design space of synchro-
nization schemes for sparse tensors. Table 3 classifies existing
schemes [23, 35, 56] based on their dimensions.

2.3 Optimal Synchronization Schemes
Next, we analyze optimal synchronization schemes for sparse
tensors based on the four design dimensions. For convenience,
we introduce two special schemes: Balanced Parallelism and
Hierarchical Centralization.

Definition 6 (Balanced Parallelism). It refers to the synchro-
nization scheme characterized by [Point-to-point, Incremental
aggregation, Parallelism, and Balanced communication].

Definition 7 (Hierarchical Centralization). It refers to the
synchronization scheme characterized by [Hierarchy, Incre-
mental aggregation, and Centralization].

Theorem 1 (Optimal schemes). To minimize communication
time for sparse tensors, the optimal synchronization scheme is
either Balanced Parallelism or Hierarchical Centralization.

Proof. Theorem 1 is proven using Lemma 1 and Lemma 2.
Here, we present the main intuitions and the detailed proof is
in Appendix B.1.

Lemma 1. When the partition pattern is fixed to Parallelism,
the optimal scheme is Balanced Parallelism.

There are three intuitions for Lemma 1: 1) Balanced com-
munication outperforms imbalanced communication; 2) Point-
to-point communication outperforms both Ring and Hierarchy
by minimizing the traffic volume of unique gradients in the
Parallelism partition pattern. and 3) Incremental aggregation
outperforms One-shot aggregation as it reduces the traffic
volume by aggregating the overlaps of sparse tensors.

Lemma 2. When the partition pattern is fixed to Centraliza-
tion, the optimal scheme is Hierarchical Centralization.

There are two intuitions for Lemma 2: 1) when the partition
pattern is fixed to Centralization, the search space is reduced
to six candidates because the Balance dimension is not appli-
cable. 2) Among these candidates, Hierarchical Centralization
minimizes the traffic volume for overlapped gradients. We
use an extreme case to demonstrate the second intuition. Sup-
pose a non-zero gradient with index idx appears in all sparse
tensors. In Point-to-point or One-shot aggregation, each GPU
has to receive this gradient n−1 times. In Ring, the gradient
from each GPU is aggregated at every stage and forwarded to
the next GPU, causing each GPU to receive the gradient n−1
times. However, with Hierarchy and Incremental aggregation,
each GPU only receives the gradient logn times.

Lemma 1 and Lemma 2 imply Theorem 1.

Communication time analysis. We will analyze the theo-
retical communication time of the two schemes mentioned
in Theorem 1. The symbols used in the analysis are listed in
Table 4. We assume that each node is equipped with a single
GPU, and that each pair of nodes has direct bidirectional con-
nections [56]. The theoretical communication time is defined
as the transfer time of messages, L/b, where L is the message
size and b is the network bandwidth. For this analysis, we
adopt the COO sparse format. For simplicity, we assume that
the tensor on each GPU has identical dG and the average den-
sification ratio for all GPUs is γn

G. Additionally, the number
of GPUs, n, is a power of 2.
• Balanced Parallelism. Communication in this scheme

involves two steps. The traffic volume each GPU receives
is 2(n−1)

n dGM in the first step and 2(n−1)
n γn

GdGM in the sec-
ond step. The total traffic volume that each GPU receives is
2(n−1)

n (γn
G +1)dGM. resulting in a communication time of:

Tbp =
n−1

n
(γn

G +1)2MdG/b. (1)

• Hierarchical Centralization. Communication in this
scheme is performed in logn stages. In the ith stage, the traffic
volume that each GPU receives is 2γ2i−1

G dGM. The total traf-
fic volume that each GPU receives is 2∑

logn
i=1 γ2i−1

G dGM. The
corresponding communication time is:

Tsm =
logn

∑
i=1

γ
2i−1

G 2MdG/b. (2)

Balanced Parallelism as the practical optimal scheme.
According to Theorem 1, the optimal scheme is determined by
comparing Equations (1) and (2). Based on the characteristics
of sparse tensors in DL models, we observe that Balanced
Parallelism is often better than the other scheme because
∑

logn
i=1 γ2i−1

G > n−1
n (γn

G +1) in practical distributed training. To
illustrate, we consider two extreme cases. The first case is

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 541

Table 3: Comparison of different synchronization schemes for sparse tensors based on their dimensions.

Schemes Communication Aggregation Partition Balance Note
AGsparse [35] Ring, Hierarchy, Point-to-point One-shot Centralization N/A Cannot fully use overlaps

to reduce traffic.SparCML [56] Hierarchy Incremental Centralization N/A
OmniReduce [23] Point-to-point One-shot Parallelism Imbalanced Imbalanced communications
Balanced Parallelism Point-to-point Incremental Parallelism Balanced The optimal scheme we find.

Table 4: The symbols used in this paper.

Symbols Description
n The number of GPUs
b The network bandwidth
G The dense tensor
M The size of the dense tensor
dG The density of G
γk

G The densification ratio of G with k GPUs

that any two tensors are fully overlapped, i.e., γn
G = dG. The

left-hand term becomes logn, while the right-hand term is
2(n−1)/n < 2, which is much smaller. For typically large n,
such as n≥ 16, the right-hand term is several times smaller.
The second case is that any two tensors have no overlaps,
i.e., γk

G = kdG. The left-hand term becomes n−1, while the
right-hand term is (n−1)(1+1/n), which is slightly larger
than n−1. However, practical overlap ratios are much higher
than 0.05, as shown in Figure 2a. More specifically, when
n = 16, ∑

logn
i=1 γ2i−1

G > n−1
n (γn

G +1) even if the overlap ratio of
any two tensors is as low as 0.05.

2.4 A Case Study on NMT model
In this section, we will empirically validate Theorem 1. As
listed in Table 3, several synchronization schemes for sparse
tensors are proposed [23, 35, 56]. We will compare their per-
formance from an algorithmic perspective, i.e., only consider
their theoretical communication time and ignore other over-
heads, such as the computation time for aggregations and the
sparse tensor encoding and decoding overheads.
• AGsparse [35]. It adopts [One-shot aggregation, Cen-

tralization], and separately collects non-zero gradients and
the corresponding indices. It cannot fully exploit the over-
laps among the sparse tensors to reduce traffic volume. Note
that there are different implementations for AGsparse with
different communication patterns [66].
• SparCML [56]. It adopts Hierarchical Centralization. It

cannot fully leverage the overlaps among the sparse tensors
to reduce traffic volume. The performance of AGsparse and
SparCML both depends on the overlaps. The fewer overlaps,
the closer their performance is to optimal. However, as shown
in Figure 2, sparse tensors across GPUs in DL models have
significant overlaps.
• OmniReduce [23]. It adopts [Point-to-point, One-shot

aggregation, and Parallelism]. OmniReduce consists of work-

ers and aggregators. It splits a gradient tensor into blocks of
gradients and only sends non-zero blocks, i.e., blocks with at
least one non-zero gradient, to aggregators for aggregations.
OmniReduce does not need to transmit indices for non-zero
gradients. It requires multiple aggregators for better scala-
bility. However, its performance suffers from imbalanced
communications because it evenly partitions tensors.

The sparse data formats are as proposed by each scheme,
i.e., AGsparse and SparCML use COO; OmniReduce uses
tensor block format. We assume the sparse data format of
Balanced Parallelism to be COO for a fair comparison.

The case where Balanced Parallelism is optimal. Figure 8
compares the performance of these synchronization schemes
to synchronize sparse tensors in NMT with a batch size of 64.
The comparison with other DL models has similar trends.
Their communication times are normalized to AllReduce,
which is the synchronization scheme for dense tensors. The
communication time of AGsparse increases linearly with the
number of GPUs. It performs worse than AllReduce with
more than 40 GPUs because it does not leverage the overlaps
among the sparse tensors to reduce traffic volume. OmniRe-
duce outperforms AllReduce with a small number of GPUs.
However, its performance improvement becomes marginal
with more than 64 GPUs. Due to the skewed distribution of
non-zero gradients, most of the non-zero gradients are in one
partition, leading to imbalanced communications. In addition,
the tensors become denser after aggregation. When splitting
this partition into tensor blocks (e.g., each block has 256 gra-
dients [23]), most of them are non-zero blocks. Therefore,
almost all gradients in this partition are sent to one aggregator,
and it becomes the communication bottleneck. SparCML is
worse than AllReduce with a large number of GPUs due to the
duplicated indices and their gradients received at each GPU.
In contrast, Balanced Parallelism greatly outperforms existing
synchronization schemes and AllReduce. For example, exist-
ing schemes cannot reduce communication time compared to
AllReduce with 128 GPUs, but the communication time of
Balanced Parallelism is still 36% lower than AllReduce.

The case where SparCML is optimal. This case is rare in
practical distributed training. We have to reduce the batch
size of NMT to a very small value for demonstration. For
example, when the batch size is 1 and the number of GPUs is
8, the density of the gradient tensors of the embedding layer
is less than 0.1%, and the sparse tensors hardly have overlaps,
i.e., γk

G ≈ k. In this scenario, SparCML outperforms AGsparse

542 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 8: Comparison of different schemes for synchronizing
sparse tensors in NMT [40] with a batch size of 64.

and Balanced Parallelism by 4% and 9%, respectively. As the
GPU number increases, SparCML still outperforms Balanced
Parallelism, but the performance gap becomes more marginal.

The index communication overhead is non-negligible.
When the sparse data format is COO, each non-zero gra-
dient in a sparse tensor comes with an index, significantly
inflating the traffic volume for gradient synchronization and
communication time. To demonstrate its costly overhead, Fig-
ure 8 displays an ideal scheme named Balanced Parallelism
without index, in which only non-zero gradients are synchro-
nized with Balance Parallelism without any index information.
Compared to the ideal scheme, Balanced Parallelism doubles
the communication time.

3 ZEN System

We crystalize the above observations and insights into a holis-
tic gradient synchronization system, ZEN (Figure 1), which
leverages the sparsity in DL models to minimize the syn-
chronization time in distributed training. ZEN comprises both
schemes described in Theorem 1 to minimize communication
time under different scenarios. At the runtime, ZEN collects
the lightweight sparsity profiling results of the first few it-
erations and intelligently determines the optimal scheme by
comparing Equations (1) and (2).

We will focus on Balanced Parallelism in this section be-
cause to date no existing solution realizes it, while Spar-
CML [56] has been proposed. We first formulate the problem
for Balanced Parallelism (§3.1) and then develop a hierarchi-
cal hashing algorithm to solve it (§3.2). We then design a new
sparse data format to minimize the communication overhead
incurred by gradient indices (§3.3) in sparse tensors.

3.1 Balanced Parallelism Formulation
For convenience, we borrow the concepts of workers and
servers from the Parameter Servers (PS) architecture [34] to
Balanced Parallelism. Because there are two steps in Balanced
Parallelism for gradient synchronization, we also call them
Push and Pull, respectively.

Suppose that there are n workers and n servers in Balanced
Parallelism. Ii⊂N+ is the indices of non-zero gradients gener-
ated by worker i. We define the problem of achieving balanced
parallelism as follows.

Problem 1. Let I denote the union of {I1, I2, · · · , In}. We
would like to have a mapping f : I→ [n] such that:
1. For every i ∈ [n] and j ∈ [n], the cardinality of set {idx ∈

Ii| f (idx) = j} is equal to |Ii|/n.
2. For every j∈ [n], the cardinality of set {idx∈ I| f (idx)= j}

is equal to |I|/n.

Here we elaborate more on the two requirements for the
mapping f accordingly as follows.
1. Load balance in Push. For every worker, mapping f needs

to decompose its non-zero gradients evenly into n parti-
tions. Therefore, workers can transmit the same amount of
non-zero gradients to each server.

2. Load balance in Pull. Each of the servers should have the
same number of non-zero gradients after aggregation. It
also implies that the same index from different workers
should be sent to the same server.

Definition 8 (The imbalance ratio). Given a mapping f that
decomposes Ii into n partitions, denoted as {I1

i , · · · , In
i }. The

imbalance ratio of Push with f is maxi, j∈[n]{n|I
j

i |/|Ii|}.
Let I denote the union of {I1, I2, · · · , In} and the sets of

indices on the n servers after aggregation are {I1,I2, · · · ,In}.
The imbalance ratio of Pull with f is maxi∈[n]{n|Ii|/|I|}.

Based on Definition 8, the imbalance ratio of Push and
Pull in Balanced Parallelism is 1. Our goal is to minimize the
imbalance ratio for any distributions of non-zero gradients.

Data-dependent solutions cause costly overheads. Due to
different sets of indices on different workers, data-dependent
solutions need to analyze their overall distribution and calcu-
late one mapping for all workers, inevitably incurring non-
negligible computation overheads. In our testbed, the mea-
sured computation cost is orders of magnitude greater than
the iteration time. Hence, we cannot afford to apply a data-
dependent algorithm and obtain a mapping f for every iter-
ation. A possible approach is to compute f periodically and
maintain it for the next iterations. However, this approach
still leads to high imbalance ratios due to the varying index
distributions across iterations. One strawman following this
approach is to sort the index set I, evenly partition it into n
parts, and use the boundary indices as thresholds to partition
the index sets in the next iterations. When computing the
thresholds every 1000 iterations for the NMT model [40] with
n = 16 and applying these thresholds to the following itera-
tions, the imbalance ratio of Push fluctuates between 1.4 and
5.1, causing imbalanced communications between servers.
Moreover, the imbalanced communications introduced by
data-dependent solutions make it difficult to estimate the iter-
ation time. Many resource scheduling mechanisms for GPU

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 543

clusters assume predictable and stable iteration times to allo-
cate resources to training jobs [41, 48, 54]. It is cumbersome
to schedule GPU resources with fluctuating communication
time.

3.2 Data-independent Hierarchical Hashing

Due to the limitations of data-dependent solutions, we must
develop a data-independent solution to achieve load balance
in both Push and Pull with negligible computation overheads.

A naive solution to solve Problem 1 is to apply a universal
hash function across multiple threads on a GPU, i.e., each
thread independently operates hash functions on a disjoint
input and writes them into a hash memory. Unfortunately, this
approach is lossy. When two indices are hashed to the same
location in a hash memory, only one index can be written
into the hash memory while the other is overwritten, leading
to significant information loss. For example, when the hash
memory size equals the size of a dense tensor with 10% den-
sity, 17.5% gradients are lost due to hash collision. Increasing
the hash memory size can reduce the information loss, but it
introduces non-negligible computational overhead because
the algorithm must extract the non-zero values from the hash
memory after the hash operations. To illustrate, consider the
embedding layer (1.6GB) in LSTM [44]. When the hash
memory size is four times the tensor size, the information
loss rate decreases to 4.8%. However, the extraction over-
head increases to 41.8ms using the built-in nonzero() API
in PyTorch 2.2 on an NVIDIA V100 GPU. This overhead
is unacceptable, as it is roughly 40% of the single-GPU it-
eration time (114 ms in our testbed). In addition, increasing
the hash memory size significantly increases GPU memory
usage, potentially causing out-of-memory issues and crashing
the training process.

We develop a novel hierarchical algorithm to solve Prob-
lem 1. We leverage multiple threads on GPUs to efficiently
perform hash functions. We achieve no information loss and
minimal GPU memory usage by using four techniques.

Technique #1: communication-oriented hash memory
management. The hash memory is divided into multiple
partitions and the data written into each partition is for the
corresponding server. Each partition is further divided into
parallel memory and serial memory to prevent data loss. When
a thread within a GPU executes a hash function, it initially
examines for hash collisions by checking if the hashed loca-
tion is occupied. In the absence of a collision, the data are
written to the parallel memory, enabling concurrent writing
operations across all threads. In case of a collision, the col-
liding indices are sequentially written to the serial memory
using an atomic operation, allowing only one thread to write
data at a time. Although the indices written in the memory
are in random order, there is no need to sort them because
their orders do not affect the aggregated results.

Occupied

Occupied Occupied

Occupied Occupied

Occupied Occupied Destination

Occupied

Occupied
Index

Assign
partition with h0

Rehash with h2
 Atomic Serial Write

Parallel Memory Serial Memory

Hash
with h1

Figure 9: Demonstration of the hierarchical hashing algorithm.
We perform parallel hashing on the indices. For each index,
we use hash function h0 to assign its partition. We next use
hash function h1 to assign it to the first location. However, be-
cause this location is occupied, we rehash it with function h2
to the fourth location. As it is also occupied, we serially write
the index into the serial memory with an atomic operation.

Unfortunately, we observe that the expense of serial writing
becomes significant when the hash collision rate is elevated.

Technique #2: multiple hash functions for each thread in
GPU. Multiple hash functions are used to reduce the cost of
serial writing. When a hash collision occurs, a GPU thread
can rehash the index with a new hash function to another
location in the parallel memory. There is a chance that this
new location is available and the number of sequential write
operations to the serial memory can be reduced. Although
hash collision still exists even with multiple hash functions,
we observe that the collision rate is less than 1% with four
hash functions and the cost of serial writing into the serial
memory becomes acceptable.

However, rehashing with multiple hash functions can cause
incomplete aggregations. Because different GPUs have dif-
ferent sets of indices for non-zero gradients, their sequences
of indices being hashed are also different. Therefore, the lo-
cation of a particular index can be different between GPUs.
For example, two indices idx1 and idx2, where idx1 < idx2,
are hashed to the same location with the first hash function.
GPU 1 has idx2; GPU 2 has both idx1 and idx2. In GPU 1, the
location of idx2 is determined by the first hash function, but
in GPU 2, the location of idx2 is determined by the second
hash function because the location hashed by the first one has
been occupied by idx1. Subsequently, partitioning the mem-
ory will lead to the same index assigned to different partitions
on different GPUs, resulting in incomplete aggregations.

Technique #3: consistent hierarchical hashing across work-
ers. We propose a two-level hierarchical hashing algorithm
to guarantee complete aggregations. The first-level hashing
determines the partition to which an index belongs and guar-
antees that an index will belong to the same partition across
all GPUs. The second-level hashing determines its locations
in this partition. To ensure that the same index from different
workers can be sent to the same server, ZEN allocates the
same first-level hashing function to all workers but allows

544 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

them to have independent second-level hashing functions.

Technique #4: lock-free read-after-write mechanism.
There is a concern that two values from two threads can
be hashed to the same available location simultaneously, and
this hash collision cannot be detected by conventional mech-
anisms, leading to information loss. ZEN uses a read-after-
write mechanism to check this collision, eliminating this type
of information loss. After memory writing, a thread reads the
value stored in the location and this operation has no depen-
dency on the values from other threads. If the value equals
what it writes, this thread will move on to the next input. How-
ever, if the value is not what it writes, it implies that there is
a hash collision and its value is overwritten. Then the thread
will take a rehash or serial writing.

Hierarchical hashing algorithm. The pseudocode with the
four techniques is shown in Algorithm 1. An example of this
algorithm is also illustrated in Figure 9. Given a dense tensor
G and the indices of its non-zero gradients I, it allocates a
memory x with shape n× (r1 + r2), where n is the number of
partitions, r1 is the memory size for parallel hashing opera-
tions, and r2 is the serial memory size. It performs a hashing
operation for every idx ∈ I in parallel (Lines 4-17). A uni-
versal hash function h0 : N+ → [n] is used to locate idx to
partition p = h0(idx) (Line 5). The algorithm also needs k
universal hash functions H = {h1, · · · ,hk}with hi :N+→ [r1].
After determining the partition p, the algorithm attempts to
find an available destination x[p][h1(idx)] with h1. If this loca-
tion is available, idx is written into it. Otherwise, the algorithm
rehashes idx with h2 to find a new location. It rehashes an
index for at most k rounds and uses hi as the hash function
for round i until it finds an available destination (Lines 6-16).
The algorithm writes idx to the serial memory of partition
p after k rehash attempts fail (Lines 8-11). Serial writing is
an atomic operation (Lines 9-10) to ensure no information
loss. Once all indices are written into the memory, it extracts
sparse tensors from the memory (Lines 19-23).

Next, we will analyze the properties of Algorithm 1 and its
imbalance ratio.
• No impact on model accuracy per iteration. ZEN is an

efficient communication scheme for sparse tensor synchro-
nization and it has no impact on the iteration-wise conver-
gence rates of models. For distributed training with natural
tensor sparsity, the aggregated result of sparse tensors with
ZEN is identical to that of the corresponding dense tensors
with AllReduce. When using sparsification algorithms, some
accuracy loss may occur due to the compression itself, de-
pending on the sparsity level. However, ZEN does not intro-
duce additional accuracy loss beyond what is inherent to the
sparsification algorithm. Specifically, ZEN’s Push ensures no
further information degradation through its four techniques,
and both its gradient aggregation and Pull operations are loss-
less. The aggregated tensor after sparse synchronization with
ZEN is identical to that produced by other schemes such as

Algorithm 1: Hierarchical Hashing Algorithm
Input: G is a dense tensor and I ⊂ N+ is the indices of its

non-zero gradients. n is the number of partitions.
Each partition has a memory size r1 + r2, where r1
and r2 are the memory sizes for parallel and serial
operations, respectively. h0 : N+→ [n] is a universal
hash function. H = {h1, · · · ,hk} is a set of universal
hash functions where hi : N+→ [r].

Output: The partitioned sparse tensors.
1 Function hierarchical_hash(I, G, h0, H):
2 Allocate memory x← 0n×(r1+r2)

3 Allocate atomic counters c← r1
n

4 foreach idx ∈ I in parallel do
5 p← h0(idx)
6 for i← 1 to k+1 do
7 q← hi(idx)
8 if i = k+1 then
9 q← atomicAdd(c[p],1)

10 x[p][q]← idx
11 end
12 if x[p][q] == 0 then
13 x[p][q]← idx
14 break
15 end
16 end
17 end
18 out put = []
19 for i← 0 to n−1 do
20 indices = nonzero(x[i])
21 values = G[indices]
22 out put.append((indices,values))
23 end
24 return out put

AGsparse [35] and OmniReduce [23]. Consequently, ZEN
preserves the same model accuracy per iteration while achiev-
ing shorter wall-clock iteration time. More detailed accuracy
evaluations and discussion are shown in Figure 18.
• Negligible memory and extraction overhead. Thanks

to multiple hashing functions and serial memory, Algorithm 1
can achieve no information loss with a small memory size,
which is typically less than 150MB (<1% GPU memory ca-
pacity) in our implementation for all the evaluated models.
The incurred overhead to extract the indices from the memory
after hashing (Line 20 in Algorithm 1) becomes negligible.
• No dependency on workloads. Note that we impose

no assumptions on the data distributions and only use the
property of universal hashing algorithms. Hence, Algorithm 1
can obtain a general theoretical guarantee for different distri-
butions of non-zero gradients in DL training workloads.
•Guaranteed imbalance ratio. Because the hash function

h0 determines the partition of each index, the imbalance ratio
of Algorithm 1 is guaranteed by the following theorem.

Theorem 2 (Load Balance of Algorithm 1). Given a dense

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 545

tensor G with |G| parameters. Algorithm 1 provides a map-
ping f : I→ [n] such that
1. With probability at least 1− 1/n, its imbalance ratio of

Push is at most 1+Θ(
√

n logn
|G|dG

).
2. With probability at least 1− 1/n, the imbalance ratio of

Pull is at most 1+Θ(
√

n logn
|G|dn

G
).

The proof can be found in Appendix B.2. Because n logn is
orders of magnitude smaller than |G|, Algorithm 1 performs
a good approximation to the exact solution of Problem 1 for
both Push and Pull. Suppose n= 128, |G|= 107, and dn

G = 0.5,√
n logn
|G|dn

G
< 0.02. Its practical imbalance ratio is always less

than 1.1 for the six models studied.

3.3 Cost-Efficient Encoding Scheme

3.3.1 Existing Sparse Formats are Inefficient

There are several sparse formats to represent sparse tensors
for their synchronization. Unfortunately, none of them can
minimize the overhead incurred by the indices for non-zero
gradients. We assume that the data type of gradients is FP32.
• COO. It is efficient with low tensor density [39, 74].

However, it doubles traffic volume and becomes inefficient
for a high density. As shown in Figure 2b, the tensors become
denser after aggregation. For example, the average tensor
density of BERT increases from 1.06% to 40.8% after the ag-
gregation of the sparse tensors from 128 GPUs. Theoretically,
transmitting sparse tensors in Pull can reduce the traffic vol-
ume by 2.5× compared to transmitting dense tensors, but the
reduction shrinks to only 1.2× due to the indices for non-zero
gradients.
• Tensor block. It is used in OmniReduce [23]. A dense

tensor is split into blocks of gradients, and only non-zero
blocks are transmitted. However, it is inefficient when the
tensor density is high. When splitting a tensor with high den-
sity into tensor blocks (e.g., each block has 256 gradients),
most of them have at least one non-zero gradient and become
non-zero tensor blocks. The synchronization scheme has to
communicate a large amount of zero gradients. We evaluated
the percentage of gradients communicated with the tensor
block format compared to the tensor density. DGC with top
5% gradients is applied to OPT-2.7B. When the block size
is 256, more than 30% gradients are communicated, much
higher than the tensor density of 5%.
• Bitmap. It only needs one bit to indicate whether a gra-

dient is zero or not. Unfortunately, a conventional bitmap
still incurs non-negligible traffic volume to identify non-zero
gradients. When the dense tensor G is evenly partitioned, the
indices of non-zero gradients in each server are in a subrange
of [1, |G|], where |G| is the number of gradients in G. For
example, when |G| = 15 and there are three servers, the in-
dex range in Server i is [5i+ 1,5(i+ 1)]. The extra bitmap

1 5 7 11 14𝕀0

0 0 0 0 0.5 0 0.7 0 0 0 0 0Dense
tensor 0 0 0

Local

gradients 0 0.5 0.7 0 0

Hash

Bitmap 0 1 1 0 0

Hash

Bitmap 0 1 1 0 0

Bitmap

Indices 2 3

1 5 7 11 14𝕀0

5 7Indices

hash_bitmap_encode()

hash_bitmap_decode()

bitmap_encode()

bitmap_decode()

Figure 10: An illustration of the hash bitmap.

Algorithm 2: The hash bitmap
Input: G is a dense tensor. Ii = {idx ∈ [1, |G|] | h0(idx) = i},

where h0 is defined in Algorithm 1.
1 Function hash_bitmap_encode(G, Ii):
2 local_gradients = G[Ii]
3 hash_bitmap = bitmap_encode(local_gradients)
4 return hash_bitmap
5 Function hash_bitmap_decode(Ii, hash_bitmap):
6 bitmap_indices = bitmap_decode(hash_bitmap)
7 indices = Ii[bitmap_indices]
8 return indices

size required to represent the indices of non-zero gradients
in each server is |G|/n/32 when the data type of gradients
is FP32. The total bitmap size received by each worker is
|G|/32. When the tensor size of G is 856MB, which equals
the embedding table size in DeepFM, the total bitmap size
is 27 MB. Although Algorithm 1 enables load balance, the
non-zero gradients in each server are randomly distributed
throughout the range. If we still use a bitmap to represent the
indices, the extra bitmap size in each server is |G|/32 and the
total bitmap size received at each worker becomes n|G|/32,
which linearly increases with the number of servers. When
there are 16 servers, the total bitmap size is 428MB.

3.3.2 Hash Bitmap

We develop a novel hash bitmap for ZEN to minimize the
overhead to represent indices for non-zero gradients in Pull.
Given a dense tensor G and h0 in Algorithm 1, the set of
indices Ii = {idx ∈ [1, |G|] | h0(idx) = i} in each worker that
should be pushed to Server i is determined, although it is not
in a continuous range. Since Ii and I j are disjoint when i ̸= j,
it provides an opportunity to construct the bitmap based on Ii,
rather than the entire range.

Figure 10 illustrates how the hash bitmap works for I0
with |G|= 15 and three servers. The indices for the two non-
zero gradients are {5,7}. hash_bitmap_encode() is used
to encode the indices. Given a dense tensor G, it first ex-
tracts local gradients according to the indices in I0. It then

546 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

encodes the local gradients into a bitmap. Because the sec-
ond and third gradients are non-zero, the second bit and the
third bit in the hash bitmap are 1 and the other bits are 0.
hash_bitmap_decode() is used to decode the hash bitmap
to a set of indices. It first decodes a hash bitmap to the bitmap
indices, which are the indices of 1. For example, because the
second and third bits in the hash bitmap are 1, the bitmap in-
dices are {2,3}. It then uses the bitmap indices as the indices
to extract the corresponding values in I0 as the global indices
for non-zero gradients. In this example, the values are {5,7},
which are exactly the indices for the two non-zero gradients.
The pseudocode is shown in Algorithm 2.

The function hash_bitmap_encode() is invoked on each
server, which then broadcasts the hash bitmap to all work-
ers. After each worker receives the hash bitmaps from all
the servers, it invokes hash_bitmap_decode() to decode
the hash bitmaps to the indices with the corresponding Ii.
Note that Ii is computed and sorted offline and it remains
unchanged for the same h0 on both servers and workers.

The hash bitmap guarantees that the total hash bitmap size
received at each worker is constantly |G|/32 in ZEN’s Pull.
Suppose that there are n servers. The set of indices that should
be pushed to Server i is Ii = {idx ∈ [1, |G|] | h0(idx) = i}.
With hash_bitmap_encode(), the size of the hash bitmap
encoded in Server i is |Ii|/32. Because each worker needs
to receive the hash bitmap from all servers, the total size is
∑

n−1
i=0 |Ii|/32 = |G|/32. Zen still uses COO to represent sparse

tensors in Push due to the low tensor density.

4 Implementation

We implement ZEN 1 with about 900 lines of Python code,
250 lines of CUDA code, and 500 lines of code for hacking
ColossalAI [36]. For DL model training, we use ColossalAI
to implement data parallelism and hybrid parallelism (data
parallelism + tensor parallelism, with tensor parallelism de-
gree set to 8, typically within a single node). We also extend
ColossalAI to support the Gemma2 [65] model from Google
with custom policies for efficient tensor parallelism.

For natural tensor sparsity, we only apply sparse tensor
synchronization schemes to gradients from the embedding
layers for their communications across machines. For the spar-
sification algorithm, we use DGC [39] and adapt it to tensor
parallelism: sampling data locally on each device, gathering
these samples across all devices, computing a global top-k
threshold based on aggregated data, and applying this thresh-
old locally to determine top-k values on each device. We reg-
ister a custom_comm_hook in PyTorch’s DDP [35] to enable
DGC and our synchronization scheme. Gradient computa-
tions overlap with gradient synchronization during backward
propagation. Gradient tensors are fused into communication
buckets in DDP before applying DGC to tensors [73]. We

1https://github.com/zhuangwang93/ZEN

determined a 128MB bucket size that works best for the eval-
uated models.

We implement the hierarchical hash algorithm in CUDA C
and use it as an extension for PyTorch. The used hash function
is MurmurHash [9]. We set different seeds for MurmurHash
to generate different hash functions. At the beginning of train-
ing, ZEN generates a set of random seeds and broadcasts
them to all GPUs to ensure hash consistency among workers.
ZEN communicates dense tensors within machines with Re-
duceScatter/AllGather [25, 66] because NVLink is typically
equipped in GPU machines. In our evaluations, Balanced
Parallelism is the optimal scheme for the studied models.

5 Evaluation

5.1 Experimental Setup
Testbeds. We use 16 p3.16xlarge instances from AWS EC2
for our evaluations. Each machine has 8 NVIDIA V100 GPUs
(16GB GPU memory) and NVLink is equipped to support
intra-instance GPU-to-GPU communications. These instances
are connected by a 25 Gbps network. We also evaluate end-
to-end training throughput with 16 p3dn.24xlarge from AWS
EC2. Each machine has 8 V100 GPUs (32GB GPU mem-
ory) and NVLink. These instances are connected by a 100
Gbps RDMA network with AWS’s Elastic Fabric Adapter
(EFA). Each machine runs Ubuntu 20.04 and the software
environment includes CUDA-11.0, PyTorch-2.2, NCCL-2.7.8,
CuPy-11.0, and ColossalAI-v0.4.6. Each p3dn.24xlarge in-
stance also includes aws-ofi-nccl-v1.9.2 and libfabric-v1.11.1
to support EFA.
Workloads. For natural tensor sparsity evaluation, we use
three models, LSTM [44], DeepFM [26], and NMT [40], as
listed in Table 1. The datasets are One Billion Word [1],
Criteo [2], and IWSLT 2014 De-En [3], respectively. The
batch sizes are 128, 1024, and 64, respectively. These models
can fit in the memory of each GPU. The per-GPU batch size
is kept constant as the number of GPUs increases. For the
tensor sparsity from sparsification algorithms, we use three
LLMs, Llama3.2-3B, OPT-2.7B, and Gemma2-2B, as listed
in Table 2. We use RedPajama [75] as the training corpus.
Because these models cannot fit into a single GPU, we use
tensor parallelism (TP) with degree 8. The batch size within
an TP group is 1 and the sequence length is 1024 tokens.
Baselines. We compare ZEN with AGsparse [35], SparCML
(SSAR_Recursive_double) [56], and OmniReduce [23]. We
use AllReduce [59] for the synchronization of dense tensors.
We apply DGC [39] to the three LLMs and select the top 5%
gradients from their gradient tensors.

5.2 DL Training Evaluation
In this section, we present the training efficiency of ZEN on
the six models and compare it with the baselines. We set k = 3,

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 547

https://github.com/zhuangwang93/ZEN

(a) LSTM (b) DeepFM (c) NMT

Figure 11: Training throughput of models with natural tensor sparsity in a 25 Gbps network.

(a) LSTM (b) DeepFM (c) NMT

Figure 12: Training throughput of models with natural tensor sparsity in a 100 Gbps RDMA network.

r1 = 2|G|dG, and r2 = r1/10 for Algorithm 1.
Training throughput for models with natural sparsity. Fig-
ure 11 shows the training throughput of models with natural
tensor sparsity in a 25G network. ZEN outperforms all base-
lines by processing more samples in a second. When train-
ing LSTM with 16 machines, ZEN achieves up to a 1.67×
speedup over SparCML (the best baseline), a 2.48× speedup
over OmniReduce and a 3.1× speedup over AllReduce. In
both DeepFM and NMT, the best baseline is OmniReduce.
ZEN achieves 1.44× speedup and 1.51× speedup over Om-
niReduce for DeepFM and NMT, respectively. As the number
of machines increases, the benefits of ZEN over SparCML
and OmniReduce are enlarged, indicating ZEN’s great scala-
bility. When increasing the network bandwidth from 25 Gbps
to 100 Gbps, ZEN still has noticeable end-to-end speedups,
as shown in Figure 12. Specifically, in LSTM, ZEN achieves
up to 1.44× speedup over SparCML, which is the best base-
line. In DeepFM and NMT, ZEN achieves up to 1.33× and
1.38× speedups over AllReduce and up to 1.25× and 1.32×
speedups over the best baseline OmniReduce.
Training throughput for models with gradient compres-
sion. ZEN has great speedups over the baselines for gradient
compression scenarios, as shown in Figure 13. For Llama3.2-
3B, it achieves up to a 1.68× speedup over OmniReduce, a
2.19× speedup over SparCML, and a 2.02× speedup over
AllReduce. In OPT-2.7B and Gemma2-2B, ZEN achieves up
to 2.10× and 2.04× speedups over AllReduce, and 1.66× and
1.61× speedups over OmniReduce. We also evaluate the train-
ing throughput improvement in a 100 Gbps RDMA network,
as shown in Figure 14. ZEN outperforms AllReduce by 64%,

45%, and 44% in Llama3.2-3B, OPT-2.7B, and Gemma2-2B,
respectively. OmniReduce is the best baseline for the three
models, while ZEN still achieves up to 1.32× in Llama3.2-3B,
1.31× in OPT-2.7B, and 1.27× in Gemma2-2B over OmniRe-
duce. These results demonstrate ZEN fully leverages sparsity
in DNN models to optimize training efficiency.
Communication improvement. The performance of ZEN is
driven by the reduction in communication time. Figure 15
shows the speedups of different synchronization schemes
over AllReduce with 16 machines in a 25 Gbps network. The
speedup of OmniReduce is up to 1.58×. We observe that the
performance of AGsparse, Sparse PS, and SparCML can be
even worse than AllReduce in some cases. They use COO as
the sparse format. With high density, the sparse tensor size
with COO is larger than the dense tensor size. The communi-
cation time of AGsparse increases linearly with the number
of machines. With SparCML, the overlaps among the sparse
tensors can be received multiple times on each GPU. In con-
trast, ZEN achieves 6.77× speedup for LSTM and 3.51×
speedup for Gemma2-2B. Its speedups over SparCML and
OmniReduce are up to 2.82× and 5.16×, respectively. ZEN
also achieves 2.10× speedup for DeepFM and 3.44× speedup
for OPT-2.7B over Allreduce.

5.3 Understanding ZEN

A study on parameters for Algorithm 1. We simulate a ten-
sor with 214M parameters (same as the embedding gradients
in DeepFM) and vary its density to perform a study on both
r1 and k in Algorithm 1. We first study the parameter r1. We

548 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(a) Llama3.2-3B (b) OPT-2.7B (c) Gemma2-2B

Figure 13: Training throughput of models with tensor sparsity from sparsification algorithms in a 25 Gbps network.

(a) Llama3.2-3B (b) OPT-2.7B (c) Gemma2-2B

Figure 14: Training throughput of models with tensor sparsity from sparsification algorithms in a 100 Gbps RDMA network.

Figure 15: Communication speedups over AllReduce in a 25
Gbps network.

set r2 = r1/10 and k = 3. As shown in Figure 16a, when we
increase r1 from |G|dG to 2|G|dG, there is a notable reduction
in operation cost because the larger memory size increases
the probability of successful parallel writing and reduces the
workload of serial writing. But when we further increase r1
from 2|G|dG to 4|G|dG, it leads to a longer computation time.
There are two reasons behind this effect. Firstly, the workload
of serial writing is already low with 2|G|dG memory. Fur-
ther increasing r1 only marginally reduces the computation
overhead. Secondly, a larger memory size can increase the
computation overhead to extract the indices (see Algorithm 1)
and thus degrade the overall performance. Figure 16b shows
the computation costs versus k when we use 2|G|dG memory.
Increasing k from 1 to 3 can reduce the operation cost as it
alleviates serial writing workload, but k = 3 and k = 4 have
very similar operation costs.
Negligible compute overhead. ZEN’s performance gains
mainly come from communication savings by only synchro-
nizing non-zero values in gradient tensors and load-balancing

(a) (b)

Figure 16: The computation overhead of Algorithm 1. (a)
Different memory sizes and (b) Different numbers of rehash.

the traffic volume across GPUs at the cost of additional hash-
ing computation, which is much smaller than the communi-
cation savings. We use the tensor with 214M parameters in
DeepFM for example. The hashing computation overhead
is around 6 ms in our testbed as the practical tensor density
is 5.2% after intra-machine aggregation. When the network
bandwidth is 25 Gbps, the communication saving over AllRe-
duce is around 270 ms, which suggests that ZEN’s compute
overhead is negligible. Even with a 100 Gbps RDMA net-
work, the hashing compute time only accounts for 9% of
communication savings.
Hash Bitmap. We show the effectiveness of hash bitmap in
representing the indices of non-zero gradients. Figure 17a
shows the tensor size with different sparse formats. The sizes
are normalized to the dense tensor and there are 16 servers.
The tensor density is the total density of all servers after ag-
gregation. The gap between the hash bitmap and the COO
increases with the tensor density. It also significantly outper-
forms the bitmap. In addition, the hash bitmap can still reduce
traffic volume with a density of 95% compared to the dense

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 549

(a) (b)

Figure 17: (a) The effectiveness of the hash bitmap; (b) The
performance breakdown of ZEN with 16 machines in a 25
Gbps network.

(a) DeepFM (b) OPT-2.7B

Figure 18: ZEN has no impact on model accuracy per iteration.

tensor, but the bitmap and the COO cannot save the volume
when the density is greater than 50%. The performance of
tensor blocks varies with the distribution of non-zero gradi-
ents. Some sparse tensors in the studied DL models can even
transmit higher traffic volume than COO because a non-zero
block has more zero gradients than non-zero gradients.
Performance breakdown. We break down the performance
of ZEN by Algorithm 1 and the hash bitmap. Figure 17b
illustrates the training throughput speedup breakdown over
AllReduce with 16 machines. It can be seen that the primary
performance benefits of ZEN come from Algorithm 1, with the
hash bitmap format providing noticeable additional benefits.
For example, when the data format is COO after applying
Algorithm 1, the speedup is 2.74× and 1.53× for LSTM and
Llama3.2-3B, respectively. Replacing COO with the hash
bitmap can further improve the speedups by 13% and 34%.
Model accuracy validation. We first validate that ZEN has
no impact on model accuracy per iteration compared to train-
ing with AllReduce for natural sparse tensors. Figure 18a
shows the model accuracy of DeepFM with 16 machines in a
25 Gbps network. The test accuracy per iteration with ZEN
matches exactly that with AllReduce. This is because ZEN bal-
ances the synchronization traffic across workers to reduce the
iteration time without information loss for gradient synchro-
nization. We then evaluate ZEN’s impact on model quality for
training with sparsification algorithms. Figure 18b shows the
training loss values of OPT-2.7B with DGC selecting top 5%
gradients. AGsparse [35] is used as the baseline for sparse ten-
sor synchronization, and we can see that ZEN and AGsparse
have identical iteration-wise loss curves, demonstrating that
ZEN retains the model convergence rates and model accuracy
per iteration as other communication schemes.

6 Related Work
Related work on schemes to support sparse tensor synchro-
nization has already been discussed in Section 2.4.
Acceleration of dense tensor synchronization. ATP [33]
and SwitchML [57] exploit programmable switches for the
synchronization of dense tensors. BytePS [29] uses the spare
CPU and bandwidth resources in GPU clouds to optimize
communications. These approaches disregard the values of
the gradients and communicate all gradients. In contrast, Zen
leverages sparsity in DNN models and only transmits non-
zero gradients to reduce the synchronization time.
Acceleration of sparse tensor synchronization. Paral-
lax [31] utilizes parameter servers for sparse tensor synchro-
nization and it cannot achieve balanced communications in
synchronization. ZEN can achieve balanced communications
using a novel hierarchical hashing algorithm. Flare [21] and
Libra [52] use programmable switches to accelerate sparse
tensor communications, but they rely on specific hardware.
Ok-Topk [38] proposes a novel sparse allreduce algorithm;
however, its inherently data-dependent balancing strategy re-
sults in significant overhead. ZEN analyzes the characteristics
of sparse tensors and explores the design space for commu-
nication schemes to determine the optimal one, but prior ap-
proaches did not consider these factors.
Hash algorithms for load balance. Previous works attempt
to achieve load balance using hashing [11,13,14,19,76]. They
typically assign two partitions to a given index using two hash
functions and then select the partition with more available
memory [20, 45,46]. However, these methods require serial
writing of indices to memory and cannot leverage multiple
threads in GPUs. In contrast, ZEN enables parallelizable com-
puting on GPUs. While DRAGONN [74] introduces a hash-
based algorithm for parallel writing of non-zero gradients
to memory, it does not address the imbalanced communica-
tions in distributed training and cannot handle hash collisions,
resulting in information loss. In contrast, ZEN achieves bal-
anced communications and avoids information loss.

7 Conclusion
We make two primary contributions in this work. First, we
systematically explore the design space to identify optimal
synchronization schemes for sparse tensors in distributed
training. Second, we propose ZEN, a practical design to pur-
sue optimal synchronization schemes with a novel hashing
algorithm using parallel computing on GPUs without infor-
mation loss. ZEN greatly improves the efficiency of sparse
DNN model training without any impact on model accuracy.

Acknowledgment

We thank the anonymous reviewers for providing valuable
and insightful feedback. This work is partially supported by
the NSF under CNS-2214272.

550 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Billion Word Benchmark. https:
//code.google.com/archive/p/
1-billion-word-language-modeling-benchmark/.

[2] Criteo dataset. https://ailab.criteo.com/
download-criteo-1tb-click-logs-dataset/.

[3] IWSLT 2014 De-En dataset. https://sites.google.
com/site/iwsltevaluation2014/data-provided.

[4] NVIDIA NCCL. https://developer.nvidia.com/
NCCL, 2021.

[5] Microsoft MSCCL. https://github.com/
microsoft/msccl, 2023.

[6] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[7] Alham Fikri Aji and Kenneth Heafield. Sparse commu-
nication for distributed gradient descent. 2017.

[8] Mohammadreza Alimohammadi, Ilia Markov, Elias
Frantar, and Dan Alistarh. L-GreCo: Layerwise-
adaptive gradient compression for efficient and accurate
deep learning. arXiv preprint arXiv:2210.17357, 2022.

[9] Austin Appleby. Murmurhash 2.0, 2008.

[10] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subra-
moni, and Dhabaleswar K Panda. Optimized broadcast
for deep learning workloads on dense-GPU InfiniBand
clusters: MPI or NCCL? In Proceedings of the 25th
European MPI Users’ Group Meeting, pages 1–9, 2018.

[11] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli
Upfal. Balanced allocations. In Proceedings of the
twenty-sixth annual ACM symposium on theory of com-
puting, pages 593–602, 1994.

[12] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradient
compression supercharged high-performance data paral-
lel DNN training. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
359–375, 2021.

[13] Petra Berenbrink, Artur Czumaj, Angelika Steger, and
Berthold Vöcking. Balanced allocations: The heavily
loaded case. SIAM Journal on Computing, 35(6):1350–
1385, 2006.

[14] Zhiruo Cao, Zheng Wang, and Ellen Zegura. Perfor-
mance of hashing-based schemes for internet load bal-
ancing. In Proceedings of IEEE INFOCOM 2000., vol-
ume 1, pages 332–341. IEEE, 2000.

[15] J Lawrence Carter and Mark N Wegman. Universal
classes of hash functions. In Proceedings of the ninth
annual ACM symposium on Theory of computing, pages
106–112, 1977.

[16] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu,
Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali
Shrivastava, and Christopher Re. MONGOOSE: A learn-
able LSH framework for efficient neural network train-
ing. In International Conference on Learning Represen-
tations (ICLR), 2021.

[17] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. PaLM: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

[18] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The
MPI message passing interface standard. In Program-
ming environments for massively parallel distributed
systems, pages 213–218. Springer, 1994.

[19] Artur Czumaj, Chris Riley, and Christian Scheideler. Per-
fectly balanced allocation. In Approximation, Random-
ization, and Combinatorial Optimization.. Algorithms
and Techniques, pages 240–251. Springer, 2003.

[20] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, Eva
Rotenberg, and Mikkel Thorup. The power of two
choices with simple tabulation. In Proceedings of the
twenty-seventh annual ACM-SIAM symposium on Dis-
crete algorithms, pages 1631–1642. SIAM, 2016.

[21] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashk-
boos, Shigang Li, and Torsten Hoefler. Flare: Flexible
in-network allreduce. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16, 2021.

[22] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[23] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini,
and Amedeo Sapio. Efficient sparse collective communi-
cation and its application to accelerate distributed deep
learning. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pages 676–691, 2021.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 551

https://code.google.com/archive/p/1-billion-word-language-modeling-benchmark/
https://code.google.com/archive/p/1-billion-word-language-modeling-benchmark/
https://code.google.com/archive/p/1-billion-word-language-modeling-benchmark/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://sites.google.com/site/iwsltevaluation2014/data-provided
https://sites.google.com/site/iwsltevaluation2014/data-provided
https://developer.nvidia.com/NCCL
https://developer.nvidia.com/NCCL
https://github.com/microsoft/msccl
https://github.com/microsoft/msccl

[24] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations,
2018.

[25] William Gropp. MPICH2: A new start for MPI
implementations. In European Parallel Virtual Ma-
chine/Message Passing Interface Users’ Group Meeting,
pages 7–7. Springer, 2002.

[26] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. DeepFM: a factorization-machine
based neural network for CTR prediction. In Proceed-
ings of the 26th International Joint Conference on Arti-
ficial Intelligence, pages 1725–1731, 2017.

[27] Wenchen Han, Shay Vargaftik, Michael Mitzenmacher,
Brad Karp, and Ran Ben Basat. Beyond throughput and
compression ratios: Towards high end-to-end utility of
gradient compression. arXiv preprint arXiv:2407.01378,
2024.

[28] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. GPipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32:103–112, 2019.

[29] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 463–479, 2020.

[30] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410,
2016.

[31] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo
Cho, Eunji Jeong, Hyeonmin Ha, Sanha Lee, Joo Seong
Jeong, and Byung-Gon Chun. Parallax: Sparsity-aware
data parallel training of deep neural networks. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019,
pages 1–15, 2019.

[32] Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Skip-thought vectors. In Advances in neural in-
formation processing systems, pages 3294–3302, 2015.

[33] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi
Chen, Wenfei Wu, Aditya Akella, and Michael Swift.
ATP: In-network aggregation for multi-tenant learning.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), pages 741–761, 2021.

[34] Mu Li, David G Andersen, Jun Woo Park, Alexander J
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2014.

[35] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. PyTorch Dis-
tributed: Experiences on accelerating data parallel train-
ing. Proceedings of the VLDB Endowment, 13(12).

[36] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang,
Haichen Huang, Yuliang Liu, Boxiang Wang, and Yang
You. Colossal-AI: A unified deep learning system for
large-scale parallel training. In Proceedings of the 52nd
International Conference on Parallel Processing, pages
766–775, 2023.

[37] Shengwei Li, Zhiquan Lai, Dongsheng Li, Yiming
Zhang, Xiangyu Ye, and Yabo Duan. EmbRace: Ac-
celerating sparse communication for distributed training
of deep neural networks. In Proceedings of the 51st
International Conference on Parallel Processing, pages
1–11, 2022.

[38] Shigang Li and Torsten Hoefler. Near-optimal sparse
allreduce for distributed deep learning. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 135–149,
2022.

[39] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and
William J Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training.
The International Conference on Learning Representa-
tions (ICLR), 2017.

[40] Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. Effective approaches to attention-based neu-
ral machine translation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421, 2015.

[41] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, 2020.

[42] Tharun Medini, Beidi Chen, and Anshumali Shrivastava.
Solar: Sparse orthogonal learned and random embed-
dings. In International Conference on Learning Repre-
sentations, 2020.

552 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[43] Mellanox. Mellanox Corporate Update.
https://www.mellanox.com/related-docs/
company/MLNX_Corporate_Deck.pdf, 2022.

[44] Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. Regularizing and optimizing LSTM language
models. arXiv preprint arXiv:1708.02182, 2017.

[45] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[46] Michael Mitzenmacher and Eli Upfal. Probability and
computing: Randomization and probabilistic techniques
in algorithms and data analysis. Cambridge university
press, 2017.

[47] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. PipeDream: gen-
eralized pipeline parallelism for DNN training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), pages 1–15, 2019.

[48] Deepak Narayanan, Keshav Santhanam, Fiodar
Kazhamiaka, Amar Phanishayee, and Matei Zaharia.
Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20), pages 481–498, 2020.

[49] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on GPU clusters using Megatron-LM. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–15, 2021.

[50] NVIDIA. A Timeline of Innovation for NVIDIA.
ttps://www.nvidia.com/en-us/about-nvidia/
corporate-timeline/, 2021.

[51] OpenAI. AI and Compute. https://openai.com/
blog/ai-andcompute/, 2021.

[52] Heng Pan, Penglai Cui, Zhenyu Li, Ru Jia, Penghao
Zhang, Leilei Zhang, Ye Yang, Jiahao Wu, Jianbo Dong,
Zheng Cao, Qiang Li, Hongqiang Harry Liu, Mathy
Laurent, and Gaogang Xie. Enabling fast and flexible
distributed deep learning with programmable switches.
arXiv preprint arXiv:2205.05243, 2022.

[53] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-
reduce algorithms for clusters of workstations. Journal
of Parallel and Distributed Computing, 69(2):117–124,
2009.

[54] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: an efficient dynamic
resource scheduler for deep learning clusters. In Pro-
ceedings of the Thirteenth EuroSys Conference, pages
1–14, 2018.

[55] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. ZeRO: Memory optimizations toward train-
ing trillion parameter models. In International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pages 1–16. IEEE, 2020.

[56] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh,
Dan Alistarh, and Torsten Hoefler. SparCML: High-
performance sparse communication for machine learn-
ing. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pages 1–15, 2019.

[57] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
in-network aggregation. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
21), pages 785–808, 2021.

[58] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné,
Alexandra Sasha Luccioni, François Yvon, Matthias
Gallé, et al. BLOOM: A 176B-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022.

[59] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[60] Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung,
and Simon See. Understanding top-k sparsifica-
tion in distributed deep learning. arXiv preprint
arXiv:1911.08772, 2019.

[61] Shaohuai Shi, Qiang Wang, Kaiyong Zhao, Zhenheng
Tang, Yuxin Wang, Xiang Huang, and Xiaowen Chu. A
distributed synchronous sgd algorithm with global top-k
sparsification for low bandwidth networks. In IEEE
39th International Conference on Distributed Comput-
ing Systems (ICDCS), pages 2238–2247. IEEE, 2019.

[62] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 553

https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf
https://www.mellanox.com/related-docs/company/MLNX_Corporate_Deck.pdf
ttps://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
ttps://www.nvidia.com/en-us/about-nvidia/corporate-timeline/
https://openai.com/blog/ai-andcompute/
https://openai.com/blog/ai-andcompute/

[63] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin
Jaggi. Sparsified SGD with memory. In Advances in
Neural Information Processing Systems, 2018.

[64] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M Dai, Anja Hauth, Katie Millican, et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

[65] Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[66] Rajeev Thakur, Rolf Rabenseifner, and William Gropp.
Optimization of collective communication operations in
MPICH. The International Journal of High Performance
Computing Applications, 19(1), 2005.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages
5998–6008, 2017.

[68] MK Vijaymeena and K Kavitha. A survey on similarity
measures in text mining. Machine Learning and Appli-
cations: An International Journal, 3(2):19–28, 2016.

[69] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang,
and Yufei Ding. TC-GNN: Bridging sparse GNN com-
putation and dense tensor cores on GPUs. In 2023
USENIX Annual Technical Conference (USENIX ATC
23), pages 149–164, 2023.

[70] Zheng Wang, Yuke Wang, Boyuan Feng, Guyue Huang,
Dheevatsa Mudigere, Bharath Muthiah, Ang Li, and
Yufei Ding. OPER: Optimality-guided embedding
table parallelization for large-scale recommendation
model. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), pages 667–682, 2024.

[71] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-
wei Fu, T. S. Eugene Ng, and Yida Wang. GEMINI: Fast
failure recovery in distributed training with in-memory
checkpoints. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP), 2023.

[72] Zhuang Wang, Haibin Lin, Yibo Zhu, and T. S. Eu-
gene Ng. Hi-speed DNN training with Espresso: Un-
leashing the full potential of gradient compression with
near-optimal usage strategies. In Proceedings of the
Eighteenth European Conference on Computer Systems,
pages 867–882, 2023.

[73] Zhuang Wang, Xinyu Wu, Zhaozhuo Xu, and T. S. Eu-
gene Ng. Cupcake: A compression scheduler for scal-
able communication-efficient distributed training. Pro-
ceedings of Machine Learning and Systems, 5, 2023.

[74] Zhuang Wang, Zhaozhuo Xu, Xinyu Wu, Anshumali
Shrivastava, and T. S. Eugene Ng. DRAGONN: Dis-
tributed randomized approximate gradients of neural
networks. In International Conference on Machine
Learning, pages 23274–23291. PMLR, 2022.

[75] Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong Lyu,
Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Red-
Pajama: an open dataset for training large language mod-
els. arXiv preprint arXiv:2411.12372, 2024.

[76] Udi Wieder et al. Hashing, load balancing and multi-
ple choice. Foundations and Trends® in Theoretical
Computer Science, 12(3–4):275–379, 2017.

[77] Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra
Dutta, El Houcine Bergou, Konstantinos Karatsenidis,
Marco Canini, and Panos Kalnis. GRACE: A com-
pressed communication framework for distributed ma-
chine learning. In Proc. of 41st IEEE Int. Conf. Dis-
tributed Computing Systems (ICDCS), 2021.

[78] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue
Wang, Xiaohan Chen, Richard G Baraniuk, Zhangyang
Wang, and Yingyan Lin. Drawing early-bird tickets:
Toward more efficient training of deep networks. In
International Conference on Learning Representations,
2019, 2020.

[79] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

[80] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu,
George Karypis, Trishul Chilimbi, Mu Li, and Xin Jin.
MiCS: Near-linear scaling for training gigantic model on
public. Proceedings of the VLDB Endowment, 16(1):37–
50, 2022.

[81] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid Sho-
janazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp:
Experiences on scaling fully sharded data parallel. Pro-
ceedings of the VLDB Endowment, 16(12):3848–3860,
2023.

554 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Appendix

A Algorithm for a Strawman Solution

In this section, we present Algorithm 3, which is the algorithm
for the data-independent solution with a straightforward hash-
ing algorithm. This algorithm supplements the discussions in
Section 3.2.

Algorithm 3: A strawman solution with hashing
Input: G is a dense tensor and I ⊂ N+ is a set of indices of its

non-zero gradients. n ∈ N+ is the number of partitions.
r ∈ N+ is the memory size for each partition. h : N+→ [nr]
is an universal hash function.

Output: The partitioned sparse tensors.
1 Function Main(I, G, h(·)):
2 Allocate memory x← 0n×r

3 foreach idx ∈ I in parallel do
4 p← ⌊h(idx)/r⌋
5 q← h(idx) mod r
6 x[p][q]← idx
7 end
8 out put = []
9 for i← 0 to n−1 do

10 indices = nonzero(x[i])
11 values = G[indices]
12 out put.append((indices,values))
13 end
14 return out put;

A naive solution to address Problem 1 is to apply a univer-
sal hash function across multiple threads on a GPU, i.e., each
thread independently operates hash functions on a disjoint
input and writes them into a hash memory. Given a dense
tensor G, the set of indices of its non-zero gradients is I. The
algorithm first allocates a memory x with shape n× r, where
n represents the number of partitions and r is the memory
size for each partition. For every idx ∈ I, it uses a given uni-
versal hash function [15] h : N+→ [nr] to generate the hash
value h(idx), where nr is the range of hash function h. Next,
it writes idx to the (h(idx) mod r)th location in partition
⌊h(idx)/r⌋. The hashing operation is performed in parallel
to minimize the computation overhead [74]. After that, it ex-
tracts the non-zero indices from the memory of each partition
and uses them to look up the corresponding gradients from G.
Finally, it returns a sparse tensor for each partition and pushes
them to the corresponding servers.

B Theoretical Analysis

B.1 Proof of Theorem 1
Theorem 1 (Optimal schemes). To minimize communication
time for sparse tensors, the optimal synchronization scheme is
either Balanced Parallelism or Hierarchical Centralization.

We prove Theorem 1 with two lemmas.

Lemma 1. When the partition pattern is fixed to Parallelism,
the optimal scheme is Balanced Parallelism.

Proof. There are three communication patterns: Ring, Hi-
erarchy, and Point-to-point. We first consider synchroniza-
tion schemes with [Point-to-point communication and Par-
allelism], namely, the PS architecture. Given n servers and
a gradient tensor G with the density of dG. We first analyze
the communication time of Push and Pull operations sepa-
rately. We then discuss the communication time of different
PS schemes.
Push. Because the skewness ratio is sn

G, the largest density in
the n partitions is sn

GdG. The size of the sparse tensor extracted
from this partition is 2sn

GdGM/n. As a result, the communica-
tion time of Push in sparse PS is 2(n−1)sn

GdGM/n/B.
Pull. After aggregation, the largest density in the n partitions
becomes sn

Gdn
G. In existing implementations of the PS architec-

ture, the communication time of Pull is 2(n−1)sn
Gdn

GM/n/B
because each server needs to broadcast its aggregated re-
sults to all the workers with Point-to-point communica-
tions [29, 34]. In theory, there are other ways to implement
Pull in the PS architecture. For example, each server can per-
form a broadcast collective operation. The performance
of broadcast with different algorithms is analyzed in [10]
and its communication time for Pull can be expressed as
2bdn

GM/B, where b is the number of rounds in an algorithm.
For example, b = ⌈logn⌉ when it uses Binomial Tree Algo-
rithm and b = 2(n−1)

n when it uses Scatter-AllGather Algo-
rithm [10, 25].
Sparse PS. Combining the communication time of Push and
Pull with Point-to-point communications, it overall communi-
cation time is 2(n−1)(dG +dn

G)s
n
GM/n/B.

Sparse PS with broadcast. When considering broadcast
for Pull, the overall communication time becomes 2(n−
1)sn

GdGM/n/B+ 2bdn
GM/B. We denote this case as Sparse

PS with broadcast.
Balanced Parallelism. In Balanced Parallelism, the skewness
ratio sn

G is always 1. We replace the sn
G in the communication

time of sparse PS as 1 and have the communication time for
Balanced Parallelism: 2(n−1)(dG +dn

G)M/n/B.
Balanced Parallelism is optimal among schemes with Par-
allelism. It is clear that Balanced Parallelism is much better
than sparse PS when the skewness ratio is large. The perfor-
mance ratio of Spase PS with broadcast to Balanced Paral-
lelism is sn

G
1+γn

G
+ n

n−1
bγn

G
1+γn

G
>

sn
G+bγn

G
1+γn

G
. Because both sn

G and b
are greater than 1, the ratio is also greater than 1. Hence, Bal-
anced Parallelism always outperforms Sparse PS and Sparse
PS with broadcast in terms of communication time.

We then prove that Balanced Parallelism outperforms other
schemes. Because One-shot aggregation cannot leverage the
overlaps among sparse tensors, the performance of synchro-
nization schemes with One-shot aggregation is worse than
those with Incremental aggregation. Therefore, we only con-
sider Incremental aggregation for schemes with Ring commu-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 555

nication or Hierarchy communication. We consider the best
case for them, i.e., the skewness ratio is 1 after tensor partition
with Parallelism. In addition, we only need to compare the
first step because they have the same communication time in
the second step. The communication time of the first step in
Balanced Parallelism is 2(n−1)dGM/n/B.
Schemes with Ring and Incremental Aggregation. They
have n−1 communication stages. The tensor density in the ith
stage is di

G. Note that d1
G = dG. Therefore, the communication

time is 2∑
n−1
i=1 di

GM/n/B. Because tensors can get denser after
aggregation, we have di

G ≤ d j
G when i < j and ∑

n−1
i=1 di

G ≥
(n−1)dG. As a result, the communication time of schemes
with Ring and Incremental aggregation is no less than that of
Balanced Parallelism.
Schemes with Hierarchy and Incremental aggregation.
They have logn communication stages. Because each par-
tition has a hierarchical structure, the traffic volume in

the ith stage is d2i−1
G
2i−1 Mn and the total traffic volume in all

logn stages is V = ∑
logn
i=1

d2i−1
G
2i−1 Mn. Because d2i−1

G ≥ dG, V ≥
∑

logn
i=1

dG
2i−1 Mn = 2(n−1)dGM. Therefore, the traffic volume

received at each GPU is no less than 2(n−1)dGM/n and they
are not better than Balanced Parallelism.

Lemma 2. When the partition pattern is fixed to Centraliza-
tion, the optimal scheme is Hierarchical Centralization.

Proof. When any two sparse tensors have no overlaps, the
minimum traffic volume each GPU has to receive is all the
tensors from other GPUs. Any synchronization scheme with
Centralization achieves the optimal communication time.

When sparse tensors overlap, let n denote the number of
GPUs and I0, I1, . . . , In−1 the set of indices for non-zero gra-
dients in each GPU, respectively. C is the overlap of all the
sparse tensors, i.e., C =

⋂
Ii. If a synchronization scheme

adopts Point-to-point communication or One-shot aggrega-
tion, each GPU has to receive C for n− 1 times. Then we
consider Incremental aggregation and the communication pat-
tern is Ring or Hierarchy. With Ring, the tensor from each
GPU is aggregated at each stage and then forwarded to the
next GPU. Consequently, this tensor is received by every GPU.
Because C is the common overlap, each GPU also has to re-
ceive C for n−1 times. When the communication pattern is
Hierarchy, each GPU receives data from all the other GPUs
with its own hierarchical structure that has logn+1 levels, as
shown in Figure 4b. Because the root GPU is in each level, it
has to receive C for logn times. It suggests that the traffic vol-
ume in the scheme with [Hierarchy, Incremental aggregation,
and Centralization] is less than that in other schemes with
Centralization. Let C′ denote the overlap of a subset of the
sparse tensors, we can draw a similar conclusion that a subset
of GPUs has to receive C′ multiple times. In other words, each
GPU still has to receive the overlaps multiple times.

Lemma 1 and Lemma 2 imply Theorem 1.

B.2 Proof of Theorem 2
Theorem 2 (Load Balance of Algorithm 1). Given a dense
tensor G with |G| parameters. Algorithm 1 provides a map-
ping f : I→ [n] such that

1. With probability at least 1−1/n, its imbalance ratio of

Push is at most 1+Θ(
√

n logn
|G|dG

).
2. With probability at least 1−1/n, the imbalance ratio of

Pull is at most 1+Θ(
√

n logn
|G|dn

G
).

Proof. The imbalance ratio of Algorithm 1 is only determined
by h0 : N+→ [n], while the set of hash functions H focuses
on exact memory write.

The number of indices in Ii is |G|dG, where dG is the density
of G. Since h0 is data independent, part 1 in Problem 1 can
be formulated as: given |G|dG balls, we would like to toss
them into n bins with the universal hash function h0. Taking
the results from [11], the maximum load of the bins is at
most |G|dG

n +Θ(
√
|G|dG logn/n) with probability at least 1−

1/n. Recall the definition of the imbalance ratio of Push in
Definition 8:

Pushn
h0
= max

i, j∈[n]

n|I j
i |
|Ii|

.

Because max{|I j
i |} ≤

|G|dG
n +Θ(

√
|G|dG logn/n), we have

Pushn
h0
≤
|G|dG +Θ(

√
|G|dGn logn)

|G|dG

= 1+Θ(

√
n logn
|G|dG

),

with probability at least 1−o(1). Thus, we finish the proof
of the first part.

Since h0 is data independent, part 2 in Problem 1 can be
formulated as: given |I|= |G|dn

G balls, we would like to toss
them into n bins with the universal hash function h0. The max-
imum load on the bins is at most |G|d

n
G

n +Θ(
√
|G|dn

G logn/n)
with probability at least 1−1/n. Recall the definition of the
imbalance ratio of Pull in Definition 8:

Pulln
h0
= max

i∈[n]

n|I ′i |
|I|

.

Because max{|I ′i |} ≤
|G|dn

G
n +Θ(

√
|G|dn

G logn/n), we have

Pulln
h0
≤
|G|dn

G +Θ(
√
|G|dn

Gn logn)
|G|dn

G

= 1+Θ(

√
n logn
|G|dn

G
),

with probability at least 1−1/n. Thus, we finish the proof of
the second part.

556 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

	Introduction
	Analysis of Sparse Tensor Synchronization
	Characteristics of Sparse Tensors
	Elemental Dimensions for Synchronization
	Optimal Synchronization Schemes
	A Case Study on NMT model

	Zen System
	Balanced Parallelism Formulation
	Data-independent Hierarchical Hashing
	Cost-Efficient Encoding Scheme
	Existing Sparse Formats are Inefficient
	Hash Bitmap

	Implementation
	Evaluation
	Experimental Setup
	DL Training Evaluation
	Understanding Zen

	Related Work
	Conclusion
	Algorithm for a Strawman Solution
	Theoretical Analysis
	Proof of Theorem 1
	Proof of Theorem 2

