
ZEN: Empowering Distributed Training with 
Sparsity-driven Data Synchronization

Zhuang Wang, Zhaozhuo Xu, Jingyi Xi, Yuke Wang

Anshumali Shrivastava, T. S. Eugene Ng



Trends in Deep Learning

• Data grows exponentially

• Data Parallelism

GPU

Training dataset partitions

GPU GPU GPU

Data Parallelism

2



Trends in Deep Learning

• Data grows exponentially

• Data Parallelism


• Model size grows exponentially

• Scale to trillion parameters

• Model Parallelism: TP, PP, FSDP

3

Model Parallelism
GPU 1 GPU 2

GPU 3 GPU 4

GPU



Trends in Deep Learning
Distributed training

• Data grows exponentially

• Data Parallelism


• Model size grows exponentially

• Scale to trillion parameters

• Model Parallelism: TP, PP, FSDP


• Hybrid parallelism for distributed training

• Data Parallelism + Model Parallelism

4



Gradient synchronization
Dense tensor synchronization among GPUs

• Communication and aggregation

5

1.0 1.4 -1 2.5 0.5 0 3.1-2.8

2.1 0.9 0.7 1.8 3.2 1.10.6

GPU 1

GPU 2

0.1 0 2.6 0.71.1GPU 3 -1.3

-2.3

-2.2 -0.2

1.8 2.4 1.0 4.9 3.9 4.0-1.1 GPU 1

GPU 2

GPU 3

-3.3

1.8 2.4 1.0 4.9 3.9 4.0-1.1-3.3

1.8 2.4 1.0 4.9 3.9 4.0-1.1-3.3

Communication

Aggregation

[1] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020

[2] Horovod: fast and easy distributed deep learning in TensorFlow, arXiv 2018

Dense tensors

• Synchronization of dense tensors has been well studied

• BytePS [1] and Ring-AllReduce [2]



Sparsity in gradient tensors
Zero gradients in tensors

• Gradients can be zeros

6

0 1.4 0 2.5 0 0 001.0 1.4 -1 2.5 0.5 0 3.1-2.8

Low sparsity High sparsity



Sparsity in gradient tensors
Zero gradients in tensors

• Gradients can be zeros


• Natural tensor sparsity in popular models

7



Sparsity in gradient tensors
Zero gradients in tensors

• Gradients can be zeros


• Natural tensor sparsity in popular models

8

• Tensor sparsity from gradient sparsification algorithms [1,2,3]

[1] Sparse communication for distributed gradient descent, ACL 2017

[2] Deep gradient compression: Reducing the communication bandwidth for distributed training, ICLR 2018

[3] Sparsified SGD with Memory, NeurPS 2018

1.0 1.4 -1 2.5 0.5 0 3.1-2.8

Low sparsity

Sparsify
0 0 0 2.5 0 0 3.1-2.8

High sparsity

Up to 99% sparsity



Synchronization of sparse tensors 
Opportunities and Research Problem

• Only communicate sparse tensors, i.e., non-zero gradients

• Greatly reduces traffic volume and synchronization time

9

0 1.4 0 2.5 0 0 00

0 0.9 0 1.8 0 00

GPU 1

GPU 2

0 0 2.6 00GPU 3 0

0

0 -0.2

0 2.3 2.5 4.4 00 GPU 1

GPU 2

GPU 3

0 -0.2

0 2.3 2.5 4.4 000 -0.2

0 2.3 2.5 4.4 000 -0.2

1.4

0.9

2.6

Sparse tensorsDense tensors

What is the optimal scheme to 
synchronize sparse tensors?

2.5

1.8

-0.2



ZEN
A near-optimal synchronization system

10

Sparse Tensor 
(e.g., Density)

Network Spec.
(e.g., Topology)

ZEN System

Cost-Efficient
Encoding Scheme

(more details in paper)

Multi-GPU Clusters

Optimized 
Sparse

Comm. Plan

Optimality-guided
Design Explore

4D Design Space
Construction

Data-independent
Hierarchical Hashing

Schem
e

Selection



ZEN
A near-optimal synchronization system 

11

Sparse Tensor 
(e.g., Density)

Network Spec.
(e.g., Topology)

ZEN System

Cost-Efficient
Encoding Scheme

(more details in paper)

Multi-GPU Clusters

Optimized 
Sparse

Comm. Plan

Optimality-guided
Design Explore

4D Design Space
Construction

Data-independent
Hierarchical Hashing

Schem
e

Selection



ZEN
A near-optimal synchronization system 

12

Sparse Tensor 
(e.g., Density)

Network Spec.
(e.g., Topology)

ZEN System

Cost-Efficient
Encoding Scheme

(more details in paper)

Multi-GPU Clusters

Optimized 
Sparse

Comm. Plan

Optimality-guided
Design Explore

4D Design Space
Construction

Data-independent
Hierarchical Hashing

Schem
e

Selection



ZEN
A near-optimal synchronization system

13

Sparse Tensor 
(e.g., Density)

Network Spec.
(e.g., Topology)

ZEN System

Cost-Efficient
Encoding Scheme

(more details in paper)

Multi-GPU Clusters

Optimized 
Sparse

Comm. Plan

Optimality-guided
Design Explore

4D Design Space
Construction

Data-independent
Hierarchical Hashing

Schem
e

Selection



Design space construction
Four elemental dimensions

• Sparse tensor before synchronization

14

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3



Design space construction
Four elemental dimensions

• Sparse tensor before synchronization

15

• Communication dimension

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3

Communication pattern

G3

G1 G3

G0 G1 G2 G3

G1

G2

G0

G3 G1

G2

G0

G3

(a) Ring (b) Hierarchy (c) Point-to-point

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 



Design space construction
Four elemental dimensions

• Sparse tensor before synchronization

16

• Aggregation dimension

16

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3
Communication pattern

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.9 2.8

4.7

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

(a) Incremental (b) One-shot 

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 



Design space construction
Four elemental dimensions

• Sparse tensor before synchronization

17

• Aggregation dimension

17

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3
Communication pattern

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.9 2.8

4.7

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

(a) Incremental (b) One-shot 

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 



Design space construction
Four elemental dimensions

• Partition dimension

18

(a) Centralization

(b) Parallelism
A tensor is partitioned 
before communication

C0 B1 B2B0A0 A1 A2C1 C2

GPU 0 GPU 1 GPU 2

A2 B1 C1A1A0 B0 C0B2 C2

GPU 0 GPU 1 GPU 2

∑A ∑B ∑C

∑C∑B∑A ∑C∑B∑A ∑C∑B∑A

Partition pattern

GPU 0 GPU 1 GPU 2 GPU 0 GPU 1 GPU 2

Partition pattern

A0 A1 A2 A0 A1 A2 A0 A1 A2

A0 A1 A2

GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2 A tensor is 
communicated as a whole

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 



Design space construction
Four elemental dimensions

• Balance dimension

19

Balance

(a) Imbalanced communication

(b) Balanced communication

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 

Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Sparse PS

1 6 7 8 9
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 5 6 7 8 9 11 15

11 5 6 7 8 10 15 1 7 8 9 10 15

10



Design space construction
Expressiveness

• Existing schemes can be described by the four dimensions

20
[1] Pytorch distributed: Experiences on accelerating data parallel, VLDB 2020

[2] SparCML: High-performance sparse communication for machine learning, SC 2019

[3] Efficient sparse collective communication and its application, SIGCOMM 2021

• The four dimensions can describe the whole design space



Find the optimal schemes
Based on the four dimensions

• “Balanced Parallelism” (our proposal)

21

“Balanced Parallelism”Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 



Find the optimal schemes
Based on the four dimensions

• “Balanced Parallelism” (our proposal)

22

“Hierarchical Centralization”Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 

• “Hierarchical Centralization” (SparCML [1])

Communication pattern

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.9 2.8

4.7

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

[1] SparCML: High-performance sparse communication for machine learning, SC 2019

Balanced Parallelism as the 
practical optimal scheme



Find the optimal schemes
Based on the four dimensions

• “Balanced Parallelism” (our proposal)

23

“Hierarchical Centralization”Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 

• “Hierarchical Centralization” (SparCML [1])

Communication pattern

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.9 2.8

4.7

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

[1] SparCML: High-performance sparse communication for machine learning, SC 2019

No existing realization of 
Balanced Parallelism



How to realize “Balanced Parallelism”?
Imbalanced communication

• Skewed distribution of non-zero gradients

24

1.5 2.2 3.5 0.8 0 0 0 0.6 0 0 0 0 0 0 1.2

1.5 2.2 3.5 0.8 0.6 1.2

GPU 0 GPU 1 GPU 2
imbalanced communications

OmniReduce[1]

[1] Efficient sparse collective communication and its application, SIGCOMM 2021

Balance

Partition

Aggregation

Communication

Point-to-point

One-shot 

Parallelism 

Balanced 



How to realize “Balanced Parallelism”?
Challenge and requirements

• Challenge: How to achieve balanced communications?


• Requirements

25

Balanced 
Parallelism

Preserve model 
accuracy

Support any 
workloads

Small computation 
overhead

Small memory 
overhead



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #1: Communication-oriented hash memory management

26

Parallel memory Serial memory for hash collision

Hash memory on GPU

GPU 0

GPU 3

…



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #1: Communication-oriented hash memory management

27

Parallel memory Serial memory

Hash memory on GPU

GPU 0

GPU 3

…9
8 19

1 
2 
5 

12

Indices of non-zero gradients



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #1: Communication-oriented hash memory management

28

1 
2 
5 

12

Parallel memory Serial memory

Hash memory on GPU

GPU 0

GPU 3

…

1

In parallel
5

9
8

Atomic serial write

12

Serial writing is expensive due to hash collision

19
2

Parallel hash
Serial write
Communication



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #2: Multiple hash functions in each GPU thread

29

1 
2 
5 

12

Parallel memory Serial memory

Hash memory on GPU

GPU 0

GPU 3

…

1

In parallel
5

9
8 19

Parallel hash
Serial write
Communication
Rehash

12
2



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #2: Multiple hash functions in each GPU thread

30

1 
2 
5 

12

Parallel memory Serial memory

Hash memory on GPU

GPU 0

GPU 3

…

In parallel

9
8 192

Parallel hash
Serial write
Communication
Rehash

Communication uncertainty due to rehashing

1
5

12



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #3: Hierarchical consistent hashing across GPUs

31

1 
2 
5 

12

Parallel memory Serial memory

Hash memory on GPU

GPU 0

GPU 3

…

First-level hash

9
8 19

Parallel hash
Serial write
Communication
Rehash

Consistent across GPUs



A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #3: Hierarchical consistent hashing across GPUs

32

1 
2 
5 

12

Parallel memory Serial memory

Hash memory on GPU

GPU 0

GPU 3

…

1
9

8 12 19
2

Parallel hash
Serial write
Communication
Rehash

5

Load-balanced communications with guarantee

Second-level hashFirst-level hash



Evaluations

• Two testbeds 

• AWS EC2 p3dn.24xlarge with V100 GPUs, 100 Gbps RDMA networks

• AWS EC2 p3.16xlarge with V100 GPUs, 25 Gbps TCP/IP networks


• Workloads

• Models with natural tensor sparsity

• Models with gradient compression (DGC [1])

33
[1] Deep gradient compression: Reducing the communication bandwidth for distributed training, ICLR 2018



Communication improvement
128 V100 GPUs

• Communication speedups are normalized to AllReduce

34

Natural tensor sparsity

6.8x speedup



Communication improvement
128 V100 GPUs

• Communication speedups are normalized to AllReduce

35

3.5x speedup

Gradient compression (DGC)



End-to-end training improvement
128 V100 GPUs

• Training throughput

36

LSTM, natural tensor sparsity
1.5x speedup

Llama3.2-3B, gradient compression  
1.3x speedup



Summary

• We study tensor sparsity in popular models


• We propose Zen with near-optimal synchronization for sparse tensors

• find provably optimal schemes from the constructed design space

• propose a hierarchical hashing algorithm for efficient realization on GPUs

37


