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Trends in Deep Learning

• Data grows exponentially

• Data Parallelism
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Trends in Deep Learning
Distributed training

• Data grows exponentially

• Data Parallelism


• Model size grows exponentially

• Scale to trillion parameters

• Model Parallelism: TP, PP, FSDP


• Hybrid parallelism for distributed training

• Data Parallelism + Model Parallelism
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Gradient synchronization
Dense tensor synchronization among GPUs

• Communication and aggregation
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[1] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020

[2] Horovod: fast and easy distributed deep learning in TensorFlow, arXiv 2018

Dense tensors

• Synchronization of dense tensors has been well studied

• BytePS [1] and Ring-AllReduce [2]



Sparsity in gradient tensors
Zero gradients in tensors

• Gradients can be zeros
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• Natural tensor sparsity in popular models
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• Tensor sparsity from gradient sparsification algorithms [1,2,3]

[1] Sparse communication for distributed gradient descent, ACL 2017

[2] Deep gradient compression: Reducing the communication bandwidth for distributed training, ICLR 2018

[3] Sparsified SGD with Memory, NeurPS 2018
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Up to 99% sparsity



Synchronization of sparse tensors 
Opportunities and Research Problem

• Only communicate sparse tensors, i.e., non-zero gradients

• Greatly reduces traffic volume and synchronization time
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ZEN
A near-optimal synchronization system
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Design space construction
Four elemental dimensions

• Sparse tensor before synchronization
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• Communication dimension
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• Sparse tensor before synchronization
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• Aggregation dimension
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Design space construction
Four elemental dimensions

• Sparse tensor before synchronization
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• Aggregation dimension
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Design space construction
Four elemental dimensions

• Partition dimension
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Design space construction
Four elemental dimensions

• Balance dimension
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Design space construction
Expressiveness

• Existing schemes can be described by the four dimensions
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[1] Pytorch distributed: Experiences on accelerating data parallel, VLDB 2020

[2] SparCML: High-performance sparse communication for machine learning, SC 2019

[3] Efficient sparse collective communication and its application, SIGCOMM 2021

• The four dimensions can describe the whole design space



Find the optimal schemes
Based on the four dimensions

• “Balanced Parallelism” (our proposal)
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Find the optimal schemes
Based on the four dimensions
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• “Hierarchical Centralization” (SparCML [1])
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[1] SparCML: High-performance sparse communication for machine learning, SC 2019

Balanced Parallelism as the 
practical optimal scheme



Find the optimal schemes
Based on the four dimensions

• “Balanced Parallelism” (our proposal)
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• “Hierarchical Centralization” (SparCML [1])

Communication pattern
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[1] SparCML: High-performance sparse communication for machine learning, SC 2019

No existing realization of 
Balanced Parallelism



How to realize “Balanced Parallelism”?
Imbalanced communication

• Skewed distribution of non-zero gradients
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How to realize “Balanced Parallelism”?
Challenge and requirements

• Challenge: How to achieve balanced communications?


• Requirements
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A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #1: Communication-oriented hash memory management
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A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #1: Communication-oriented hash memory management
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A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #2: Multiple hash functions in each GPU thread
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A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #2: Multiple hash functions in each GPU thread
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A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #3: Hierarchical consistent hashing across GPUs
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A hierarchical hashing algorithm
Balanced Parallelism on GPUs

• Technique #3: Hierarchical consistent hashing across GPUs
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Evaluations

• Two testbeds 

• AWS EC2 p3dn.24xlarge with V100 GPUs, 100 Gbps RDMA networks

• AWS EC2 p3.16xlarge with V100 GPUs, 25 Gbps TCP/IP networks


• Workloads

• Models with natural tensor sparsity

• Models with gradient compression (DGC [1])

33
[1] Deep gradient compression: Reducing the communication bandwidth for distributed training, ICLR 2018



Communication improvement
128 V100 GPUs

• Communication speedups are normalized to AllReduce
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Natural tensor sparsity
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Communication improvement
128 V100 GPUs

• Communication speedups are normalized to AllReduce
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3.5x speedup

Gradient compression (DGC)



End-to-end training improvement
128 V100 GPUs

• Training throughput
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LSTM, natural tensor sparsity
1.5x speedup

Llama3.2-3B, gradient compression  
1.3x speedup



Summary

• We study tensor sparsity in popular models


• We propose Zen with near-optimal synchronization for sparse tensors

• find provably optimal schemes from the constructed design space

• propose a hierarchical hashing algorithm for efficient realization on GPUs
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