

ZEN: Empowering Distributed Training with Sparsity-driven Data Synchronization

Zhuang Wang, Zhaozhuo Xu, Jingyi Xi, Yuke Wang Anshumali Shrivastava, T. S. Eugene Ng

Trends in Deep Learning

- Data grows exponentially
 - Data Parallelism

Training dataset partitions

Trends in Deep Learning

- Data grows exponentially
 - Data Parallelism
- Model size grows exponentially
 - Scale to trillion parameters
 - Model Parallelism: TP, PP, FSDP

Trends in Deep Learning Distributed training

- Data grows exponentially
 - Data Parallelism lacksquare
- Model size grows exponentially
 - Scale to trillion parameters
 - Model Parallelism: TP, PP, FSDP lacksquare
- Hybrid parallelism for distributed training
 - Data Parallelism + Model Parallelism

Gradient synchronization **Dense tensor synchronization among GPUs**

Communication and aggregation

- Synchronization of dense tensors has been well studied
 - BytePS^[1] and Ring-AllReduce^[2]

[1] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OS [J] 2020 [2] Horovod: fast and easy distributed deep learning in TensorFlow, arXiv 2018

Sparsity in gradient tensors Zero gradients in tensors

Gradients can be zeros

Low sparsity

High sparsity

Sparsity in gradient tensors Zero gradients in tensors

- Gradients can be zeros
- Natural tensor sparsity in popular models

Model	MLP Size	Embedding Size	Embedding Sparsity
		88	8~ F ~~~~J
LSTM	20M	406M	98.87%
DeepFM	68M	214M	97.20%
NMT	31M	112M	97.53%

Sparsity in gradient tensors Zero gradients in tensors

- Gradients can be zeros
- Natural tensor sparsity in popular models

Model	MLP Size	Embedding Size	Embedding Sparsity
LSTM	20M	406M	98.87%
DeepFM	68M	214M	97.20%
NMT	31M	112M	97.53%

Tensor sparsity from gradient sparsification algorithms ^[1,2,3]

Low sparsity

- [1] Sparse communication for distributed gradient descent, ACL 2017
- [2] Deep gradient compression: Reducing the communication bandwidth for distributed training, ICLR 2018
- [3] Sparsified SGD with Memory, NeurPS 2018

Up to 99% sparsity

Synchronization of sparse tensors **Opportunities and Research Problem**

- Only communicate sparse tensors, i.e., non-zero gradients
 - Greatly reduces traffic volume and synchronization time

Design space construction Four elemental dimensions

Sparse tensor before synchronization

2.5 GPU 3

Four elemental dimensions

Sparse tensor before synchronization

Communication dimension

to-point	
hot	
lism	
ced	

Four elemental dimensions

Sparse tensor before synchronization

Aggregation dimension

to-point	
hot	
	•
lism	
ced	

Four elemental dimensions

Sparse tensor before synchronization

Aggregation dimension

to-point	
hot	
	•
lism	
ced	

to-point	
hot	
lism	
ced	

Design space construction Four elemental dimensions

Balance dimension

to-point
hot
lism
ced
*

Design space construction Expressiveness

Existing schemes can be described by the four dimensions

Schemes	Communication	Aggregation	Partition	Balance
AGsparse [1]	Ring, Hierarchy, Point-to-point	One-shot	Centralization	N/A
SparCML [2]	Hierarchy	Incremental	Centralization	N/A
OmniReduce [3]	Point-to-point	One-shot	Parallelism	Imbalanced

The four dimensions can describe the whole design space

- [1] Pytorch distributed: Experiences on accelerating data parallel, VLDB 2020
- [2] SparCML: High-performance sparse communication for machine learning, SC 2019
- [3] Efficient sparse collective communication and its application, SIGCOMM 2021

Find the optimal schemes **Based on the four dimensions**

• "Balanced Parallelism" (our proposal)

Find the optimal schemes **Based on the four dimensions**

• "Balanced Parallelism" (our proposal)

[1] SparCML: High-performance sparse communication for machine learning, SC 2019

"Hierarchical Centraliza

ation"
to-point
hot
lism
ced

Find the optimal schemes **Based on the four dimensions**

• "Balanced Parallelism" (our proposal)

[1] SparCML: High-performance sparse communication for machine learning, SC 2019

"Hierarchical Centraliza

ation"
to-point
hot
lism
ced

How to realize "Balanced Parallelism"? **Imbalanced communication**

How to realize "Balanced Parallelism"? **Challenge and requirements**

- Challenge: How to achieve balanced communications?
- Requirements

Support any workloads

> Balanced Parallelism

Preserve model accuracy

Small memory overhead

Small computation overhead

 Technique #1: Communication-oriented hash memory management Hash memory on GPU

 Technique #1: Communication-oriented hash memory management Hash memory on GPU

Parallel memory

9

8

Indices of non-zero gradients

2

5

12

 Technique #1: Communication-oriented hash memory management Hash memory on GPU

Technique #2: Multiple hash functions in each GPU thread

Hash memory on GPU

- Parallel hash

- ---- Rehash

Technique #2: Multiple hash functions in each GPU thread

Hash memory on GPU

Communication uncertainty due to rehashing

- Parallel hash
 - Serial write
- Communication
- Rehash

• Technique #3: Hierarchical consistent hashing across GPUs

Hash memory on GPU

First-level hash

Consistent across GPUs

- Parallel hash

- ---- Rehash

• Technique #3: Hierarchical consistent hashing across GPUs

Hash memory on GPU

First-level hash Second-level hash

Load-balanced communications with guarantee

- Parallel hash
 - Serial write
- Communication
- Rehash

Evaluations

- Two testbeds
 - AWS EC2 p3dn.24xlarge with V100 GPUs, 100 Gbps RDMA networks
 - AWS EC2 p3.16xlarge with V100 GPUs, 25 Gbps TCP/IP networks
- Workloads
 - Models with natural tensor sparsity
 - Models with gradient compression (DGC ^[1])

Communication improvement 128 V100 GPUs

Communication speedups are normalized to AllReduce

Natural tensor sparsity

Communication improvement 128 V100 GPUs

Communication speedups are normalized to AllReduce

End-to-end training improvement 128 V100 GPUs

• Training throughput

Summary

- We study tensor sparsity in popular models
- We propose Zen with near-optimal synchronization for sparse tensors
 - find provably optimal schemes from the constructed design space
 - propose a hierarchical hashing algorithm for efficient realization on GPUs