
Scaling Deep Learning through Optimizing
Data- and Management-Plane Communications

Zhuang Wang

Department of Computer Science

Advisor: Prof. T. S. Eugene Ng

Roadmap

• Background of distributed deep learning (DDL)

• Four research projects that optimize communications in DDL

• Zen, OSDI ’25

• Espresso, EuroSys ‘23

• Cupcake, MLSys ‘23

• Gemini, SOSP ‘23

• Implementation and evaluation

• Acknowledgement

2

Deep learning is everywhere

Language processing

Recommendation Voice assistant3

Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

GPU

4

Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

Training dataset partitions

GPU GPU GPU GPU

Data parallelism

5

Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

• Model size grows exponentially

• Towards models with trillion parameters

6

Model parallelism
GPU 1 GPU 2

GPU 3 GPU 4

GPU

Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

• Model size grows exponentially

• Towards models with trillion parameters

7

Model parallelism
GPU 1 GPU 2

GPU 3 GPU 4

GPU• Distributed deep learning

• Data parallelism

• Model parallelism

Distributed deep learning (DDL)
Training system

GPU Machine

Storage
system

Checkpoint Training traffic

• Two components

• GPU machines for model training

• Storage system that stores checkpoints for fault tolerance

8

GPU machines

Distributed deep learning (DDL)
Training system

GPU Machine Checkpoint Training traffic

• Two components

9

Storage
system

Data plane Management plane

Communications in DDL
In both planes

GPU Machine Checkpoint Training traffic

• Communications are bottlenecks for scalability

10

Storage
system

Data plane Management plane
Communications for model training Communications for fault tolerence

Gradient
synchronization Checkpoint

Goal of this thesis

GPU Machine Checkpoint Training traffic

• Communications are bottlenecks for scalability

11

Storage
system

Data plane Management plane
Communications for model training Communications for fault tolerence

Gradient
synchronization Checkpoint

Recognize and tackle the communication obstacles within DDL to
enhance its scalability

Thesis statement

12

This thesis demonstrates the feasibility of mitigating communication bottlenecks in
distributed deep learning by utilizing current hardware resources within a training
system, complemented by intelligent traffic and resource scheduling algorithms.

Research summary
Scaling deep learning by optimizing communications

• Mitigate data-plane communication bottlenecks

13

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Storage
system

OSDI ‘25

Research summary
Scaling deep learning by optimizing communications

• Mitigate data-plane communication bottlenecks

14

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

OSDI ‘25

Research summary
Scaling deep learning by optimizing communications

• Mitigate data- and management-plane communication bottlenecks

15

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

Research summary
Scaling deep learning by optimizing communications

• Thesis work

16

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

The next research project
Scaling deep learning by optimizing communications

• Thesis work

17

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

Gradient synchronization
Dense tensor synchronization among GPUs

• Communication and aggregation

18

1.0 1.4 -1 2.5 0.5 0 3.1-2.8

2.1 0.9 0.7 1.8 3.2 1.10.6

GPU 1

GPU 2

0.1 0 2.6 0.71.1GPU 3 -1.3

-2.3

-2.2 -0.2

Different tensors on different GPUs

1.8 2.4 1.0 4.9 3.9 4.0-1.1 GPU 1

GPU 2

GPU 3

SUM
-3.3

1.8 2.4 1.0 4.9 3.9 4.0-1.1-3.3

1.8 2.4 1.0 4.9 3.9 4.0-1.1-3.3

Same aggregated tensor on all GPUs

BytePS[1]

Ring-AllReduce[2]

[1] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020

[2] Horovod: fast and easy distributed deep learning in TensorFlow, arXiv 2018

Dense tensors

Sparsity in gradient tensors
Non-zero gradients in tensors

• Gradients can be zero

19

0 1.4 0 2.5 0 0 00

• Statistics from popular DNN models

1.0 1.4 -1 2.5 0.5 0 3.1-2.8

Low sparsity High sparsity

4

Synchronization of sparse tensors
Opportunities

• Communicate sparse tensors, i.e., non-zero gradients

• Greatly reduces the amount of traffic volume

• Potentially shortens communication time

20

0 1.4 0 2.5 0 0 00

0 0.9 0 1.8 0 00

GPU 1

GPU 2

0 0 2.6 00GPU 3 0

0

0 -0.2

0 2.3 2.5 4.4 00 GPU 1

GPU 2

GPU 3

0 -0.2

0 2.3 2.5 4.4 000 -0.2

0 2.3 2.5 4.4 000 -0.2

1.4

0.9

2.6

Sparse tensorsDense tensors

What is the optimal scheme to
synchronize sparse tensors?

2.5

1.8

-0.2

Contributions
Zen

• We comprehensively analyze and understand the fundamentals of sparsity

• We systematically explore the design space of schemes for the first time

• Four dimensions to describe any scheme

21

• We find the provably optimal scheme from the design space

• We propose a novel hierarchical hashing algorithm that uses parallel
computing on GPUs to realize the optimal scheme

• We propose a new data format to represent sparse tensors to minimize
the overhead required for indices

Contributions
Zen

• We comprehensively analyze and understand the fundamentals of sparsity

• We systematically explore the design space of schemes for the first time

• Four dimensions to describe any scheme

• We find the provably optimal scheme from the design space

• We propose a novel hierarchical hashing algorithm that uses parallel
computing on GPUs to realize the optimal scheme

• We propose a new data format to represent sparse tensors to minimize the
overhead required for indices

22

How to describe the design space?
Four dimensions

• Sparse tensor before synchronization

23

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3

How to describe the design space?
Four dimensions

• Sparse tensor before synchronization

24

• Communication dimension

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3

Communication pattern

G3

G1 G3

G0 G1 G2 G3

G1

G2

G0

G3 G1

G2

G0

G3

(a) Ring (b) Hierarchy (c) Point-to-point

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot

Ring

Centralization Parallelism

Imbalanced Balanced

How to describe the design space?
Four dimensions

• Sparse tensor before synchronization

25

• Aggregation dimension

25

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3
Communication pattern

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.9 2.8

4.7

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

(a) Incremental (b) One-shot

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot

Ring

Centralization Parallelism

Imbalanced Balanced

How to describe the design space?
Four dimensions

• Partition dimension

26

(a) Centralization

A tensor is partitioned
before communication(b) Parallelism

C0 B1 B2B0A0 A1 A2C1 C2

GPU 0 GPU 1 GPU 2

A2 B1 C1A1A0 B0 C0B2 C2

GPU 0 GPU 1 GPU 2

∑A ∑B ∑C

∑C∑B∑A ∑C∑B∑A ∑C∑B∑A

Partition pattern

GPU 0 GPU 1 GPU 2 GPU 0 GPU 1 GPU 2

Partition pattern

A0 A1 A2 A0 A1 A2 A0 A1 A2

A0 A1 A2

GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2 A tensor is
communicated as a whole

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot

Ring

Centralization Parallelism

Imbalanced Balanced

How to describe the design space?
Four dimensions

• Balance dimension

27

Balance

(a) Imbalanced communication

(b) Balanced communication

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot

Ring

Centralization Parallelism

Imbalanced Balanced

Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Sparse PS

1 6 7 8 9
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 5 6 7 8 9 11 15

11 5 6 7 8 10 15 1 7 8 9 10 15

10

Expressiveness
Describe schemes for sparse tensor synchronization

• All existing schemes can be described by the four dimensions

28

[1] Pytorch distributed: Experiences on accelerating data parallel, VLDB 2020

[2] Sparcml: High-performance sparse communication for machine learning, SC 2019

[3] Scaling distributed machine learning with the parameter server, OSDI 2014

[4] Efficient sparse collective communication and its application, SIGCOMM 2021

• The four dimensions can describe the whole design space

What is the optimal scheme?
Based on the four dimensions

• Problem statement

29

What is the optimal scheme to minimize the communication
time of sparse tensor synchronization in DDL?

Find the optimal scheme
Based on the four dimensions

• “Balanced Parallelism”

30

“Balanced Parallelism”Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot

Ring

Centralization Parallelism

Imbalanced Balanced

Find the optimal scheme
Based on the four dimensions

• “Balanced Parallelism”

31

“Balanced Parallelism”Sparse PS

1 6 8 7 11
GPU 0 GPU 1 GPU 2

GPU 0 GPU 1 GPU 2
1 6 5 8 9 11 15

9 5 710 8 15 1 78 910 156

10 7

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot

Ring

Centralization Parallelism

Imbalanced Balanced

• Sketch of proof

• Parallelism can leverage the overlaps among sparse tensors

• Balanced pattern minimizes communication time

• Point-to-point can avoid repetitive communications

We have a formal proof in the thesis

Numerical comparison
Take sparse tensors in NMT as examples

• Communication time of sparse tensor synchronization

32

No existing realization of Balanced Parallelism

35%

Balanced
Parallelism

How to realize “Balanced Parallelism”?

• Skewed distribution of non-zero gradients

33

1.5 2.2 3.5 0.8 0 0 0 0.6 0 0 0 0 0 0 1.2

1.5 2.2 3.5 0.8 0.6 1.2

CPU 0 CPU 1 CPU 2
imbalanced

communications

Sparse PS[1]

OmniReduce[2]

[1] Scaling distributed machine learning with the parameter server, OSDI 2014

[2] Efficient sparse collective communication and its application, SIGCOMM 2021

Balance

Partition

Aggregation

Communication

Point-to-point

One-shot

Parallelism

Balanced

How to realize “Balanced Parallelism”?

• Skewed distribution of non-zero gradients

34

• Challenge: how to achieve balanced communications?

1.5 2.2 3.5 0.8 0 0 0 0.6 0 0 0 0 0 0 1.2

1.5 2.2 3.5 0.8 0.6 1.2

CPU 0 CPU 1 CPU 2
imbalanced

communications

Sparse PS[1]

OmniReduce[2]

[1] Scaling distributed machine learning with the parameter server, OSDI 2014

[2] Efficient sparse collective communication and its application, SIGCOMM 2021

Balance

Partition

Aggregation

Communication

Point-to-point

One-shot

Parallelism

Balanced

Solution: A hierarchical hashing algorithm
Parallel computing on GPUs for hashing

• Level-1: hash indices of non-zero gradient for partitions

35

1,2,3,4 7 15Indices

Partition

Randomly distributed

1,7 2,4 3,15

In parallel

P1 P2 P3

Solution: A hierarchical hashing algorithm
Parallel computing on GPUs for hashing

• Level-2: rehash indices for available locations within each partition

36

1,2,3,4 7 15Indices

Hash memory

Partition

Randomly distributed

1 2 4 3

1,7 2,4 3,15

Rehash

7
7 15

Rehash

Parallel memory
Serial memory

15

Atomic serial write

In parallel

In parallel

P1 P2 P3

Solution: A hierarchical hashing algorithm
Properties

• Level-2: rehash indices for available locations within each partition

37

Guaranteed load balance

Small hash memory size

Strength in parallel computing

Hash consistency among workers

No information loss

1,2,3,4 7 15Indices

Hash memory

Partition

Randomly distributed

1 2 4 3

1,7 2,4 3,15

7
Rehash

7
15

Rehash

Parallel memory
Serial memory

15

Atomic serial write

In parallel

In parallel

P1 P2 P3

The next research projects
Scaling deep learning by optimizing communications

• Thesis work

38

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

Gradient compression for communications

• Some deep learning models don’t have high sparsity

39

Gradient compression for communications

• Some deep learning models don’t have high sparsity

• Gradient compression (GC) shrinks communication traffic volume

• It has negligible impacts on model accuracy [1]

[1] GRACE: A compressed communication framework for distributed machine learning, ICDCS ‘21 40

Gradient compression for communications

• Some deep learning models don’t have high sparsity

• Gradient compression (GC) shrinks communication traffic volume

41

• Sparsification

FP32

8 bits

2 bits

1 bit

75%

94%

97%

1.1 2.2 3.4 4.5 1.6 3.4 4.5
Top k

0.9

• Quantization

Gradient
format

Gradient compression (GC) in theory

• GC reduces communication overhead

42

timeAfter compression

Communication

(Theoretically)

Communication
overhead
reductionT1 T2

T0 T1 T2

T0 T1 T2

Computation

Communication

• However, GC algorithms are designed from an algorithmic perspective

T0

Gradient compression (GC) in reality
Use GPU for compression

• GC incurs computation overhead in practice

43

Computation

Communication

T0 T1 T2

T0 T1 T2

T0 T1

T0

T0

Computation

Compression

Communication

time

T1

T1

T2

T2

T2

time

GPU compression time

Unleash the benefits of GC
Espresso: search for optimal compression strategy

• Contributions

• We leverage both GPUs and CPUs to perform gradient compression simultaneously

• We design a decision tree abstraction to holistically describe the search space of

compression strategies

• Whether to compress each tensor?

• the type of compute resources (e.g., CPUs or GPUs) for compression?

• the communication schemes for compressed tensors?

• We devise an compression decision algorithm that selects near-optimal strategies
in seconds to optimize training throughput of DDL

• Espresso is partially deployed at ByteDance GPU cluster

4444

Unleash the benefits of GC
Cupcake: Fuse tensors for compression

4545

<

• Deep learning models have many small tensors (<4MB)

• Existing approaches compress tensor by tensor

• Invokes compress operations for each tensor

• fixed overheads to launch and execute kernels in CUDA, even for small tensors

Contributions of Cupcake

46

• We propose a general compression optimizer with a fusion fashion for GC
algorithms to accelerate the training throughput

• We design an algorithm that finds the optimal fusion strategy in seconds

• We build a compression-enabled system with this compression optimizer

timeAfter tensor fusion
T0Computation

Compression

Communication

time

T1 T2 T3 T4

T0,2

T0,2

T3,4

T3,4

47

Cupcake
Fuse tensors for compression

T0

T0

T0

Computation

Compression

Communication

T1

T1

T1

T2

T2

T2

T3

T3

T3

T4

T4

T4

Challenge
Trade-off between compression and communication overhead

T0

T0

T0

Computation

Compression

Communication

time

T1

T1

T1

T2

T2

T2

T3

T3

T3

T4

T4

T4

Least communication overhead
Worst compression overhead

Computation

Compression

Communication

time

T0,4

T0 T1 T2 T3 T4

T0,4
Least compression overhead

Worst communication overhead

After tensor fusion

48

Goal
Trade-off between compression and communication overhead

49

T0

T0

T0

Computation

Compression

Communication

time

T1

T1

T1

T2

T2

T2

T3

T3

T3

T4

T4

T4

T0Computation

Compression

Communication

time

T1 T2 T3

T0,4

T4

T0,4

After tensor fusion
Find the optimal fusion strategy for compression-enabled DDL to

maximize the training throughput

Cupcake
Find the optimal fusion strategy

• Difficult to formulate the iteration time

50

Computation Communication Compression OverlappingIteration time =

T0Computation

Compression

Communication

time

T1 T2 T3

T0

T4

T4

T0,2

T1 T2 T3

T3,4

Overlap

But overlapping time is determined by the intricate interactions among tensors

Search space

• Exponential time to find the optimal strategy with brute force

51

T0Computation T1 T2 T3 T4

Fusion F0

T0Computation T1 T2 T3 T4

Fusion F0

T0Computation T1 T2 T3 T4

Fusion F0 F1

Time complexity: O()2N

Pruning techniques #1

No need to examine all cases for the formation of F0

52

Computation

Compression

Communication

Tensor fusion

T0 … Ti-1 Ti … TN-1Ti+1

F0

F0

F0

timeCurrent optimal

Ti+2

• Examine F0

Pruning techniques #1

No need to examine all cases for the formation of F0

53

Computation

Compression

Communication

Tensor fusion

T0 … Ti-1 Ti … TN-1Ti+1

F0 F1

F0 F1

F0 F1

time

Ti+1

Current optimal

• Examine F0

Pruning techniques #1

No need to examine all cases for the formation of F0

54

Computation

Compression

Communication

Tensor fusion

T0 … Ti-1 Ti … TN-1Ti+1

F0 F1

F0 F1

F0 F1

time

Ti+2

Current optimal

• Examine F0

Pruning techniques #1

No need to examine all cases for the formation of F0

55

Computation

Compression

Communication

Tensor fusion

T0 … Ti-1

F0

F0

F0

timeCurrent optimal

Ti … TN-1Ti+1 Ti+2

Prune strategies with such F0 that its lower bound is greater than the current optimal

X

Lower bound F0 F1

F1

• Examine F0

Pruning techniques #2

Fuse more tensors based on the communication progress

56

Computation

Compression

Communication

Tensor fusion

T0 T1 T2

F0

F0

time

Suppose F0 is formed
and now form F1

Computation

Compression

Communication

Tensor fusion

T0 T1 T2

F0

F0

T0

T3 T4 T5

F1

F1

T3 T4

F1

F1

T1 T2

T6 T7 T8

F2

F2

T3 T4 T5 T6 T7 T8

T0 T1 T2

F2

T5 T6 T7 T8

F2

T3 T4 T5 T6 T7 T8

Pruning techniques #2

Fuse more tensors based on the communication progress

57

Computation

Compression

Communication

Tensor fusion

T0 T1 T2

F0

F0

time

Suppose F0 is formed
and now form F1

Computation

Compression

Communication

Tensor fusion

T0 T1 T2

F0

F0

T0

T3 T4 T5

F1

F1

T3 T4

F1

F1

T2

T6 T7 T8

F2

F2

T3 T4 T5 T6 T7 T8

T0 T1 T2

F2

T5 T6 T7 T8

F2

T3 T4 T5 T6 T7 T8

Prune strategies with such F1 when F0 is formed

T1

Pruning techniques #2

Fuse more tensors based on the communication progress

58

Computation

Compression

Communication

Tensor fusion

T0 T1 T2

F0

F0

time
Computation

Compression

Communication

Tensor fusion

T0 T1 T2

F0

F0

T0

T3 T4 T5

F1

F1

T3 T4

F1

F1

T1 T2

T6 T7 T8

F2

F2

T3 T4 T5 T6 T7 T8

T0 T1 T2

F2

T5 T6 T7 T8

F2

T3 T4 T5 T6 T7 T8

Cupcake searches the whole search space with the two pruning
techniques and it can find the optimal fusion strategy in seconds

We have a formal proof in the thesis

The next research project
Scaling deep learning by optimizing communications

• Thesis work

59

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

Large Language Model (LLM)
Models towards trillion parameters

• Recent LLMs

Larger training
models

More GPUs
involved

Longer training
time

60

Failures are frequent

• Software failures • Hardware failures

[1] Opt: Open pre-trained transformer language models, arXiv ’22

• OPT-175B: 100+ failures[1] in two months

Link failures

Switch failures

Library failures

Remote storage failures

GPU failures

61

Checkpoint for failure recovery

• How checkpoint works?

Time

Failure

Wasted time

Periodically checkpoint
the model states

Resume from the last
checkpoint Redo the computation

62

X
Checkpoint

Desire higher checkpoint frequency

Checkpoint for failure recovery

• How checkpoint works?

Time

Failure

Wasted time

Periodically checkpoint
the model states

Resume from the last
checkpoint Redo the computation

63Remote storage

Checkpoint

Desire higher checkpoint frequency

Checkpoint in LLM
Limited checkpoint frequency

• Checkpoint to remote storage takes a long time

• Checkpoint frequency is limited by the checkpoint time

64

Failure recovery in large model training

Time

Failure

The wasted time

Checkpoint
Retrieval

Iteration

ckpt 1

100 200 300 310 200

tckpt

ckpt 2 ckpt 3 ckpt 2

trtvl

Checkpoint in LLM
Prohibitive failure recovery overhead

• Costly wasted time

• Even with the highest checkpoint frequency

65

• Significant GPU resources are wasted due to failure recovery

• Thousands of GPUs involved

• Hundreds of failures during training

Contributions

66

• We propose the first system that uses CPU memory for checkpointing to
enable fast failure recovery

• No assumptions on the underlying parallelism strategy

• We design a provably optimal checkpoint placement strategy on CPU memory

• We design a traffic scheduling algorithm that orchestrates training and
checkpoint traffic to eliminate the interference on training throughput

• Gemini is being deployed at AWS to provide fault tolerance to LLM training

Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

CPU memory size is sufficient to store checkpoints

67

Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

• Checkpoint to CPU memory enables a much higher frequency

68

Remote storage

Checkpoint to remote storage

GPU Machine CPU memory

Low Bandwidth

Checkpoint

Checkpoint to CPU memory

High Bandwidth

Challenge #1

• Data stored in CPU memory can get lost

69

Challenge #1 and solution

• Data stored in CPU memory can get lost

70

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

1

Machine 1 1

Machine 2

Machine 3
1

X

In case of failures

GPU

Machine

Local checkpoint

Remote checkpoint

Challenge #1 and solution

• Data stored in CPU memory can get lost

71

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• Why not Erasure Coding?

• Prohibitive computation cost

• CPU memory is not a bottleneck

Challenge #1 and solution

• Data stored in CPU memory can get lost

72

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• What is the optimal checkpoint placement?

Goal
Checkpoint replicas

• Data stored in CPU memory can get lost

73

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• What is the optimal checkpoint placement?

Maximize the probability of failure recovery from checkpoints
stored in CPU memory

Solution
Group placement strategy

• An example with two replicas

74

1
Machine 1

Machine 2

Machine 3

Machine 4

2

2
1

3
4

4
3

Group 1 Group 2

GPU

Machine

Local checkpoint

Remote checkpoint

Machine 5

Machine 6

5
6

6
5

Group 3

1. Given m replicas, all machines are divided into
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for
all machines within the same group

Solution
Group placement strategy

• An example with two replicas

75

GPU

Machine

Local checkpoint

Remote checkpoint

Group placement strategy is provably optimal

Two checkpoint replicas can already
handle most cases!

m: # of checkpoint replicas

k: # of failures machines

1
Machine 1

Machine 2

Machine 3

Machine 4

2

2
1

3
4

4
3

Group 1 Group 2

Machine 5

Machine 6

5
6

6
5

Group 3

A formal proof in the thesis

93%

80%

Challenge #2

• Checkpoint traffic interferes with training traffic

76

GPU Machine

Remote storage

Checkpoint Training traffic

Checkpoint to remote storage

Checkpoint traffic and training traffic
have different networks

Challenge #2

• Checkpoint traffic interferes with training traffic

77

GPU Machine

Remote storage

Checkpoint Training traffic

Checkpoint to CPU memory

Checkpoint traffic and training traffic
shares the same network

Solution
Traffic interleaving

• Observation: Idle timespans in the network

78

Computation

Communication

Time(a) Baseline

Training traffic

Idle timespans

Solution
Traffic interleaving

• Insert checkpoint traffic in idle timespans

79

Computation

Communication

Time(a) Baseline

Training traffic

Computation

Communication

Time(c) Interleaving

Checkpoint

Checkpoint traffic

No overhead
compared to Baseline

Out-of-memory issue

80

Time(a) Baseline

Training traffic• Minimize the extra GPU memory consumption

• GPU memory is mainly used for training

• Limited spare GPU memory for checkpoints

GPU

GPU

CPU

Time

Sender

Receiver

(b) Out of memory

X

X

Our design
Address out-of-memory issue

• Checkpoint partition and pipelining

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple parts

81

Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

Our design
Address out-of-memory issue

• Checkpoint partition and pipelining

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple parts

• Pipeline checkpoint communications

82

Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

Our design
Address out-of-memory issue

• Checkpoint partition and pipelining

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple parts

• Pipeline checkpoint communications

83

Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

The GPU buffers are reused

1 2 1 2 1 2 1 2A small GPU buffer, e.g., 128MB, is sufficient

Implementation and evaluations

• Zen

• Built upon Horovod and PyTorch

• Hierarchical hashing algorithm is implemented in CUDA C (~500 LoC)

• Espresso

• A compression module in BytePS[1]

• Partially deployed at ByteDance GPU clusters

• Cupcake, open source[2]

• GEMINI

• Built upon DeepSpeed

• Deploying at AWS to support fault tolerance in LLM training

[1] Espresso: https://github.com/bytedance/byteps/tree/Espresso

[2] Cupcake: https://github.com/zhuangwang93/Cupcake 84

https://github.com/bytedance/byteps/tree/Espresso
https://github.com/zhuangwang93/Cupcake

Zen
128 V100 GPUs with 25Gbps network

• Communication improvement

• Speedups are normalized to AllReduce

85

6.8x communication speedup LSTM, 1.7x end-to-end speedup

• End-to-end efficiency improvement

• Training throughput

Espresso and Cupcake
64 V100 GPUs with 25Gbps network

• Espresso

• Speedups are normalized to AllReduce

86

1.7x end-to-end speedup

• Cupcake

• Compared to layer-wise approaches

1.8x end-to-end speedup

VGG16 + Rand-k ResNet50

GEMINI
128 A100 GPUs, 100 billion parameters

• Checkpoint frequency

8X170X

87

• Training throughput

Negligible overhead on iteration timeCheckpoint model states every iteration

Research summary
Scaling deep learning by optimizing communications

• Thesis work

88

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

Acknowledgement

Prof. Eugene Prof. Edward Prof. Anshumali Prof. Santiago

Acknowledgement

Acknowledgement

Research summary
Scaling deep learning by optimizing communications

• Thesis work

92

GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high
sparsity

Zen

Tensors with low
sparsity

DRAGONN
ICML ‘22

Espresso

Cupcake
MLSys ‘23

EuroSys ‘23
Storage
system

Gemini
SOSP ‘23

Checkpoint creation

Checkpoint retrieval

OSDI ‘25

