Scaling Deep Learning through Optimizing
Data- and Management-Plane Communications

Zhuang Wang
Department of Computer Science

Advisor: Prof. T. S. Eugene Ng

e CROTINOUS
eaTprises

W
7
o=z

PROCES

l
SIEN'
solve

"ﬂEvELUPu

s.v%i:lcn(

?UPT'ICAL
3 IEI~'I-'I[IIENlTE

Lad
p—
M'

lﬁ"...i ' :
zsmence 8 Seierey

Lo
(—=F
—lE
=t
_m°

Big Data and Optical Lightpaths Driven Lab

Roadmap

 Background of distributed deep learning (DDL)

* Four research projects that optimize communications in DDL
e Zen, OSDI 25
 Espresso, EuroSys ‘23
 Cupcake, MLSys ‘23
 Gemini, SOSP 23

* |mplementation and evaluation

 Acknowledgement

Deep learning Is everywhere

How to do a good PhD thesis defense?

Defending your PhD thesis can be nerve-wracking, but with thorough preparation and a
positive mindset, you can make it a successful and satisfying experience. Here are some tips
on how to do a good PhD thesis defense:

1. Know Your Thesis Inside Out: Be intimately familiar with every aspect of your thesis.
Understand your research questions, methodology, findings, and conclusions. Anticipate
potential guestions and critiques from your committee, and be ready to provide detailed
responses.

2. Practice Your Presentation: Practice your defense presentation multiple times in front of a
mirror, friends, or family. Pay attention to your delivery, timing, and clarity. Your presentation

Language processing ‘

“Hey Alexa” “Hey Sin” “Hey Google”

Recommendation 3 Voice assistant

Trends in deep learning

e Data grows exponentially

GPU
 Easy scale to terabytes

Trends in deep learning

Data parallelism
e Data grows exponentially
GPU GPU GPU GPU
 Easy scale to terabytes

Training dataset partitions

Trends in deep learning

Model parallelism
e Data grows exponentially

 Easy scale to terabytes

 Model size grows exponentially

* Towards models with trillion parameters

Trends in deep learning

Model parallelism
e Data grows exponentially

 Easy scale to terabytes

 Model size grows exponentially

* Towards models with trillion parameters

» Distributed deep learning

* Data parallelism

* Model parallelism

Distributed deep learning (DDL)

Training system

 fwo components
* GPU machines for model training

* Storage system that stores checkpoints for fault tolerance

Storage
system

GPU machines

GPU [_]Machine <3 Checkpoint 4— Training traffic

8

Distributed deep learning (DDL)

Training system

 fwo components

--

Data plane Management plane
Storage .
system .

--

GPU DMaChlne <:ICheCkp0|nt < Training traffic

9

Communications in DDL

In both planes

 Communications are bottlenecks for scalability

Communications for model training Communications for fault tolerence

----------------------------------- "--------------------------------

' Data plane Management plane
.

Storage
system

Gradient

synchronization Checkpoint

GO EmE E EE E E E BN BN BN BN NNNBND BN

l 4

GPU DMaChine <:ICheCkpoint < Training traffic

10

Goal of this thesis

Recognize and tackle the communication obstacles within DDL to
enhance its scalability

11

Thesis statement

This thesis demonstrates the feasibility of mitigating communication bottlenecks in
distributed deep learning by utilizing within a training
system, complemented by

12

Research summary

Scaling deep learning by optimizing communications

* Mitigate data-plane communication bottlenecks

05D 2 Communications for model training Communications for fault tolerence
: 5 TN N NI AN S FEEEEEEEEEREEEREEE R R .- e EREEREEEEEEFEEEFEEEEEREREREEEREERERES
' Data plane Management plane,

Zen
Tensors with high

sparsity

GPU DMaChine <:ICheCkpoint < Training traffic

13

Research summary

Scaling deep learning by optimizing communications

* Mitigate data-plane communication bottlenecks

0SDI 05 Communications for model training Communications for fault tolerence
Zen ' Data plane : Management plane®
' __Tensors with high :
ICML ‘22 . sparsity :
DRAGONN E
EuroSys ‘23 '~ Tensors with low :
Espresso E sparsity :
MLSys 23 . ':
Cupcake

GPU DMaChine <:ICheCkpoint < Training traffic

14

Research summary

Scaling deep learning by optimizing communications

* Mitigate data- and management-plane communication bottlenecks

OSDI ‘25
Zen

ICML ‘22
DRAGONN

EuroSys ‘23

Espresso

MLSys ‘23
Cupcake

Communications for model training

Data plane

Tensors with high
sparsity

Tensors with low
sparsity

'! Management plane,

@l®» Checkpoint creation
. Checkpoint retrieval
' ﬁ Storage
. system

D Machine <:I Checkpoint <—Training traffic

15

Communications for fault tolerence

------------------ "------------------------------

Gemini
SOSP ‘23

Research summary

Scaling deep learning by optimizing communications

e Thesis work

‘ Communications for model training Communications for fault tolerence
OSZ[;IH% ' Data plane MO I-Vl-e;r;e;ée-r}\-e-n-t-ﬁl-a-n-el
' __Tensors with high ,
E Sparsty @l®» Checkpoint creation
E E Gemini
EuroSys 23 ! Tensors with low . Checkpoint retrieval . SOSP ‘23
- sparsity ' M Storage E
. ' system :
MLSys 23 -\ " A
Cupcake oo T

GPU DMaChine <:ICheCkpoint < Training traffic

16

The next research project

Scaling deep learning by optimizing communications

e Thesis work

‘ Communications for model training Communications for fault tolerence
osztzn25 ' Data plane MO I-Vl-e;r;e;ée-r}\-e-rn-t-ﬁl-ah-el
' __Tensors with high ,
E Sparsty @l®» Checkpoint creation
E E Gemini
EuroSys 23 ! Tensors with low . Checkpoint retrieval . SOSP ‘23
- sparsity ' M Storage E
. ' system :
MLSys 23 -\ " A
Cupcake oo T

GPU DMaChine <:ICheCkpoint < Training traffic

17

Gradient synchronization

Dense tensor synchronization among GPUs

 Communication and aggregation

Dense tensors

GPU 1 [1.0[1.4] 1 |25]05]-28] 0 [31 1.8[2.4[3.3[1.0[4.9]-11]39]4.0] GPU
21[o9f2307]|1806]32[1.1 1.8[2.4[3.3[1.0]4.9]-11]39]4.0| GPU 2
BytePSI]

GPU 3 [1.3[0.1] o [22]2.6]1.1]0.7} 0.2/ Ring-AlReducerzr *{1.8|2.4]-3.31.0[4.9]-1.1]3.9]4.0[GPU 3

GPU 2

Different tensors on different GPUs Same aggregated tensor on all GPUs

[1] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020
[2] Horovod: fast and easy distributed deep learning in TensorFlow, arXiv 2018 18

Sparsity in gradient tensors

Non-zero gradients in tensors

e (Gradients can be zero

1.0]14[1]25]05[28 0 |31 ofr4fofasjofo]o]o

Low sparsity High sparsity

o Statistics from popular DNN models

Model Task Dataset Batch Size | Sparisty
LSTM Language Modeling One Billion Word 128 98.87%
DeepFM Click-through Rate Prediction Criteo 1024 97.20%
NMT Machine Translation IWSLT 2014 De-En 64 97.53%

BERT Question Answering SQuAD vl.1 4 98.94%

19

Synchronization of sparse tensors
Opportunities

 Communicate sparse tensors, i.e., hon-zero gradients
* Greatly reduces the amount of traffic volume

* Potentially shortens communication time

Dense tensors Sparse tensors

cPutfo]1afof2s|ofo]ojo
cPuz|ojoofojofrsfojofo 0]23] 0]25[a4] 0] 0 [o2]aPu2

rus oo e[[ze[o [0 oz o [zl o [es[ee] o [o fod cous

What is the optimal scheme to
synchronize sparse tensors?

o] o [zs[ea 0 [0 [od oy

Contributions

Zen
 WWe comprehensively the fundamentals of sparsity
 We systematically of schemes for the first time

* Four dimensions to describe any scheme
 We find the from the design space

* \We propose that uses parallel
computing on GPUs to realize the optimal scheme

* \We propose to represent sparse tensors to minimize
the overhead required for indices

21

Contributions

Zen

 We systematically of schemes for the first time

* Four dimensions to describe any scheme

* \We propose that uses parallel
computing on GPUs to realize the optimal scheme

22

How to describe the design space?

Four dimensions

e Sparse tensor before synchronization

GPU O GPU 1 GPU 2 GPU 3

How to describe the design space?

Four dimensions Tttt "

Communication

« Sparse tensor before synchronization (ing J(H'eramhy) (PO'”“OPO'”G
Aggregation
GPUO GPU1 GPU2 GPUS [Incremental) [One-shot J
« Communication dimension »
Partition
@ [Centralization) [Parallelism)
@ @ Balance
@ (Imbalanoed) (Balanced J

(a) Ring (b) Hierarchy (c) Point-to-point

24

How to describe the design space?

Four dimensions

e Sparse tensor before synchronization

GPU O GPU 1

* Aggregation dimension

4.7

1.2

3
‘
3
‘

(a) Incremental

GPU 2 GPU 3

(b) One-shot

25

Communication

[Ring | (Hierarchy | Point-to-point]

Aggregation

[Incremental) [One-shot)

Partition

[Centralization) [Parallelism)

Balance

(Imbalanoed) (Balanced J

How to describe the design space?

Four dimensions

Communication

e Partition dimension [_Ring] (Hierarchy | (Point-to-point]

GPUO GPU 1 GPU 2
Tolm 5
4 '1

s
A 3
A 3
s

Aggregation

[Incremental) [One-shot)

GPU2 A tensor is Partition

communicated as a whole

[Centralization) [Parallelism J

Balance

(Imbalanoed) (Balanced J

A tensor Is partitioned
before communication

b) Parallelism

26

How to describe the design space?

Four dimensions

e Balance dimension

GPU 0

1116|178

9

]

GPU O

GPU 1

GPU 2

=

5

6

718

10

15

GPU 1

1

7

819110

15

(a) Imbalanced communication

GPU 0

1]6 |10

=

GPU 1

5/8(9

GPU 2

GPU 2

7 [11[15

116 819

7

11

GPU O

/

6

10

518

7

15

GPU 1

1

10

819

15

(b) Balanced communication

GPU 2

27

Communication

[Ring | (Hierarchy | Point-to-point]

Aggregation

[Incremental) [One-shot J

Partition

[Centralization) [Parallelism)

Balance

(Imbalanced) (Balanced J

EXpressiveness

Describe schemes for sparse tensor synchronization

* All existing schemes can be described by the four dimensions

Schemes Communication Aggregation Partition Balance
AGsparse [1 Ring, Hierarchy, Point-to-point = One-shot Centralization N/A
SparCML [2] Hierarchy Incremental Centralization N/A
Sparse PS [3] Point-to-point One-shot Parallelism Imbalanced
OmniReduce [4] Point-to-point One-shot Parallelism Imbalanced

* The four dimensions can describe the whole design space

[1] Pytorch distributed: Experiences on accelerating data parallel, VLDB 2020

[2] Sparcml: High-performance sparse communication for machine learning, SC 2019

[3] Scaling distributed machine learning with the parameter server, OSDI 2014 28
[4] Efficient sparse collective communication and its application, SIGCOMM 2021

What is the optimal scheme?

Based on the four dimensions

e Problem statement

What is the optimal scheme to
of sparse tensor synchronization in DDL?

29

Find the optimal scheme

Based on the four dimensions

“Balanced Parallelism”

Communication

. “Balanced Parallelism” [Ring | (Hierarchy | | Point-to-point]
GPU 0 GPU 1 GPU 2 |
| 1]6]10] [5Ts[9] [7 T [75 Aggregation
T —
>§ A‘v / [Incremental J (One-shot J
[116]]8 [11] [e]to] [s]8][7f15] [1]10] [8]9] |7[15] "
GPU o GPU 1 GPU 2 Partition

[Centralization) (Parallelism)

Balance

(Imbalanced) (Balanced J

30

Find the optimal scheme

]] “Balanced Parallelism”
Based on the four dimensions

Communication

e “Balanced Parallelism” (_Ring J (Hierarchy] (Pointto-point]
GPU O GPU 1 GPU 2 _
| 1]6]10] [5Ts[9] [7 T [75 Aggregation
/ T . -
A‘v [Incremental J (One-shot J
[Te] [elo] [7In1] [elwo] [5Te] [711s] [iTio] [e]e] [7Tts] "
GPU O GPU 1 GPU 2 Partition
« Sketch of proof [Centralization) (Parallelism)
* Parallelism can leverage the overlaps among sparse tensors Balance
. (Imbalanced J (Balanced J

We have a formal proof in the thesis

31

Numerical comparison

Take sparse tensors iIn NMT as examples

 Communication time of sparse tensor synchronization

— = Dense -~ SparCML @~ OmniReduce
AGsparse == Sparse PS @)~ Balanced Parallelism

1.50 > 3

Zéj 125 | A

O
= 1.00f====== S et

=
= 0.75

=

* 0.50
=

)
£ 0.25
@)

0.00

Balanced
Parallelism

20 40 60 80 100 120
Number of GPUs

No existing realization of Balanced Parallelism

32

How to realize “Balanced Parallelism”?

Communication

» Skewed distribution of non-zero gradients Point-to-point]

1.5[22]35l08[0 |ofojosjojofojofofoliz
Sparse PSI l | l | l (One-shot J
OmniReducel?! ¢m -

artition

Aggregation

CPUO CPU CPU 2 (Parallelism }
Balance
(Balanced)
[1] Scaling distributed maf:hine Iearnin.g with the parameter server, OSDI 2014 33

[2] Efficient sparse collective communication and its application, SIGCOMM 2021

How to realize “Balanced Parallelism”?

Communication

» Skewed distribution of non-zero gradients Point-to-point]

1.5[22]35l08[0 |ofojosjojofojofofoliz
Sparse PSI l | l | l (One-shot J
OmniReducel?! ¢m -

artition

Aggregation

CPUO CPU CPU 2 (Parallelism }
* Challenge: how to achieve balanced communications?? Balance
Balanced
[1] Scaling distributed maf:hine Iearnin.g with the parameter server, OSDI 2014 34

[2] Efficient sparse collective communication and its application, SIGCOMM 2021

Solution: A hierarchical hashing algorithm

Parallel computing on GPUs for hashing

* Level-1: hash indices of non-zero gradient for partitions

Indices
"
In parallel Randomly distributed

Partition 1,7 2.4 3,15

35

Solution: A hierarchical hashing algorithm

Parallel computing on GPUs for hashing

e | evel-2: rehash indices for available locations within each partition

N<_

In parallel Randomly distributed

Partition 3,15

- %%

Hash memory 1
[/15 \/‘

Rehash Rehash Atomic serial write

Parallel memory

% Serial memory

Solution: A hierarchical hashing algorithm

Properties

e | evel-2: rehash indices for available locations within each partition

Guaranteed load balance Indices 1,2,3,4

No information loss In Parallel Randomly distributed
Partition 2.4 3 15
Small hash memory size
In parallel
Strength in parallel computing Hash memory | 1 2 | 4
Rehash Rehash Atomic serial write

Hash consistency among workers

Parallel memory
> Serial memory

The next research projects

Scaling deep learning by optimizing communications

e Thesis work

‘ Communications for model training Communications for fault tolerence
osztzn25 : 'Data plane == —m——o—— T I-Vl-e;r;e;ée-r}\-e-rn-t-ﬁl-ah-el
' __Tensors with high ,
E Sparsty @l®» Checkpoint creation
E E Gemini
EuroSys 23 ! Tensors with low . Checkpoint retrieval . SOSP ‘23
Espresso sparsity ' M Storage E
. ' system :
MLSys23 .4 000 " A
Cupcake

GPU DMaChine <:ICheCkpoint < Training traffic

38

Gradient compression for communications

 Some deep learning models don’t have high sparsity

Model Task Dataset Batch size
VGG16 Computer vision ImageNet 32 images
ResNet101 Computer vision ImageNet 32 1mages

UGATIT Computer vision selfie2anime 2 images

39

Gradient compression for communications

 Some deep learning models don’t have high sparsity

Model Task Dataset Batch size
VGG16 Computer vision ImageNet 32 images
ResNet101 Computer vision ImageNet 32 1images

UGATIT Computer vision selfie2anime 2 images

e Gradient compression (GC) shrinks communication traffic volume

* |t has negligible impacts on model accuracy !

[1] GRACE: A compressed communication framework for distributed machine learning, ICDCS ‘21 40

Gradient compression for communications

 Some deep learning models don’t have high sparsity

Model Task Dataset Batch size
VGG16 Computer vision ImageNet 32 images
ResNet101 Computer vision ImageNet 32 1images

UGATIT Computer vision selfie2anime 2 images

e Gradient compression (GC) shrinks communication traffic volume

e Quantization e Sparsification
75% ¥

Top k
Gradient P

format 94% ¥ mmm —

07% v »

Gradient compression (GC) in theory

e (GC reduces communication overhead

Computation

Communication
After compression Communication time
o «—— overhead —

e eduction

(Theoretically)

 However, GC algorithms are designed from an algorithmic perspective

42

Gradient compression (GC) in reality

Use GPU for compression

 GC incurs computation overhead in practice
[] GPU compression time

Computation
Communication

@ time
Computation '
Compression

Communication

43 time

Unleash the benefits of GC

Espresso: search for optimal compression strategy

e Contributions
* We leverage to perform gradient compression simultaneously

* We design to holistically of
compression strategies

Whether to compress each tensor?
the type of compute resources (e.g., CPUs or GPUs) for compression?

the communication schemes for compressed tensors?

* We devise an that selects near-optimal strategies
iIn seconds to optimize training throughput of DDL

» Espresso is partially deployed at ByteDance GPU cluster

44

Unleash the benefits of GC

Cupcake: Fuse tensors for compression

* EXIsting approaches compress tensor by tensor
* Invokes compress operations for each tensor

 fixed overheads to launch and execute kernels in CUDA, even for small tensors

* Deep learning models have many small tensors (<4MB)

I B ResNeth0
|

|| II..' II II ll--l

Tensor size (KB)
45

of tensors

Contributions of Cupcake

* We propose a general with for GC
algorithms to accelerate the training throughput

* We design an algorithm that INn seconds

* We build a with this compression optimizer

46

Cupcake

Fuse tensors for compression

Computation
Compression
Communication

@ time
Computation :

Compression T0,2 13,4

Communication

time

47

Challenge

Trade-off between compression and communication overhead

Least communication overhead
Worst compression overhead

Computation

Compression
Communication
& time
Computation L east compreksion overhead
. Worst communication overhead
Compression T0,4 :

Communication T0,4

time

48

Goal

Trade-off between compression and communication overhead

Find the optimal fusion strategy for compression-enabled DDL to

49

Cupcake

Find the optimal fusion strategy

e Difficult to formulate the iteration time

lteration time = -4 -1 —

Computation

Compression T0,2 13,4
Communication

<« Qverlap -»» time

But overlapping time is determined by the intricate interactions among tensors

50

Search space

 Exponential time to find the optimal strategy with brute force

Computation

Fusion
Computation

Fusion

Computatior
Fusion

Time complexity: O(2™)

51

Pruning techniques #1

No need to examine all cases for the formation of FO

e Examine FO

Computation | To | ... | Tis
Tensor fusion

Compression

Communication

Current optimal time

52

Pruning techniques #1

No need to examine all cases for the formation of FO

e Examine FO

Computation
Tensor fusion
Compression

Communication

Current optimal time

53

Pruning techniques #1

No need to examine all cases for the formation of FO

e Examine FO

Computation L | T

Tensor fusion
Compression

Communication

Current optimal time

54

Pruning techniques #1

No need to examine all cases for the formation of FO

e Examine FO

Computation
Tensor fusion

Compression
Communication
Lower bound

Current optimal time

Prune strategies with such FO that its lower bound is greater than the current optimal

55

Pruning techniques #2

Fuse more tensors based on the communication progress

Suppose FO is formed
and now form F1

Computation
Tensor fusion

Compression
Communication

time

Computation

Tensor fusion

Compression :

Communication I S N T
56

Pruning techniques #2

Fuse more tensors based on the communication progress

Suppose FO is formed
and now form F1

Computation

Tensor fusion
Compression

time

Communication

Computation
Tensor fusion

Prune strategies with such F1 when FO is formed

57

Pruning techniques #2

Fuse more tensors based on the communication progress

Cupcake with the two pruning
techniques and it can In seconds

We have a formal proof in the thesis

The next research project

Scaling deep learning by optimizing communications

e Thesis work

‘ Communications for model training Communications for fault tolerence
osztzn25 ' Data plane MO I-Vl-e;r;e;ée-r}\-e-rn-t-ﬁl-ah-el
' __Tensors with high ,
E Sparsty @l®» Checkpoint creation
E E Gemini
EuroSys 23 ! Tensors with low . Checkpoint retrieval . SOSP ‘23
- sparsity ' M Storage E
. ' system :
MLSys 23 -\ " A
Cupcake oo T

GPU DMaChine <:ICheCkpoint < Training traffic

59

Models towards trillion parameters

e Recent LLMs

Large Language Model (LLM)

Model Parameters| |Accelerators I Training time| Developer Year
Turing-NLG | 17.2B 256 V100 | | — Microsoft 2020
GPT-3 175B — — OpenAl 2020
OPT-175B 175B 992 A100 2 months Meta 2021
Gopher 280B 4096 TPU v3| | 1.3 months Google 2021
MT-NLG 530B 4480 A100 3 months Microsoft & NVIDIA 2022
PalL.M 540B 6144 TPU v4| | 2 months Google 2022
GPT-4 1.76T — 4-7 months OpenAl 2023

Larger training
models

More GPUs
involved

60

Longer training
time

Failures are frequent

e Software failures e Hardware failures
i = -
Library failures GPU failures

o
= {03 Link failures

Remote storage failures ~
of

» OPT-175B: 100+ failuresl'l in two months Switch failures

[1] Opt: Open pre-trained transformer language models, arXiv '22 61

Checkpoint for failure recovery

e How checkpoint works?

Periodically checkpoint Resume from the last
—_—)

the model states checkpoint Redo the computation

I .|
IIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIIIIIII
...............
aB Ny
.......
| Ny
......
......
g Ny
1 3 Ny
.
.
.
.
.
.
___|

Checkpoint
Wasted time

Desire higher checkpoint frequency

62

Checkpoint for failure recovery

e How checkpoint works?

Periodically checkpoint Resume from the last
—_—)

the model states checkpoint Redo the computation

Failure

\\: ﬁ AA// Wasted time

Remote storage 63

Checkpoint

Checkpoint in LLM

Limited checkpoint frequency

* Checkpoint to remote storage takes a long time

Model Parameters Checkpoint size = Checkpoint time (20Gbps)
Gopher [56] 280B 3.4 TB 23 min
MT-NLG [62] 530B 6.4 TB 43 min
PaLM [23] 540B 6.5 TB 44 min

* Checkpoint frequency is limited by the checkpoint time

100 200 300 310 200
| | I 7/ S | S
. lteration
Failure
tkpt 6 ttvl
Kot AR > """ """ Checkpoint
ckp ckpt 2 ckpt 3 -
o mmm e e e e T . @ Retrieval

The wasted time

Time

64

Checkpoint in LLM

Prohibitive failure recovery overhead

* Costly wasted time

 Even with the highest checkpoint frequency

Model Parameters Checkpoint size = Checkpoint time (20Gbps) |Average wasted time
Gopher [56] 280B 3.4 TB 23 min 57 min
MT-NLG [62] 530B 6.4 TB 43 min 108 min

PalLM [23] 540B 6.5 TB 44 min 110 min

» Significant GPU resources are wasted due to failure recovery
* Thousands of GPUs involved

* Hundreds of failures during training

65

Contributions

* We propose the first system that to
enable fast failure recovery

* No assumptions on the underlying parallelism strategy

 We design a strategy on CPU memory
* We design that orchestrates training and
checkpoint traffic to on training throughput

* Gemini is being deployed at AWS to provide fault tolerance to LLM training

66

Gemini
Checkpoint to CPU memory

 CPU memory is much larger than GPU memory

Instance type Cloud GPU GPU memory CPU memory
p3dn.24xlarge [14] AWS 8 V100 |8 X 32 GB 768 GB
pdd.24xlarge [15] AWS 8 A100 |8 x 40 GB 1152 GB
ND40rs_v2 [10] Azure 8V100 |8 x 32 GB 672 GB
ND9%6asr_v4 [11] Azure 8 A100 |8 x 40 GB 900 GB
n1-8-v100 [9 GCP 8 V100 |8 X 32 GB 624 GB
a2-highgpu-8g [9] GCP 8 A100 |8 x 40 GB 640 GB

DGX A100 [12] NVIDIA 8 A100 |8 x 80 GB 2 TB

CPU memory size is sufficient to store checkpoints

67

Gemini
Checkpoint to CPU memory

 CPU memory is much larger than GPU memory
* Checkpoint to CPU memory enables a much higher frequency

LOW Bandwidth High Bandwidth

— 1%.#7
Remote storage , *

Checkpoint to remote storage Checkpoint to CPU memory

‘ GPU D Machine - CPU memory <:I Checkpoint

68

Challenge #1

» Data stored in CPU memory can get lost

69

Challenge #1 and solution

» Data stored in CPU memory can get lost

» Solution: checkpoint redundancy

* Design choice: checkpoint replicas
In case of failures

Machine 2 Machjgfe 2
Machine 3 : Machine 3
GPU Local checkpoint

70 D Machine Remote checkpoint

Challenge #1 and solution

» Data stored in CPU memory can get lost

» Solution: checkpoint redundancy

* Design choice: checkpoint replicas Why not Erasure Coding?
* Prohibitive computation cost
Machine 2 _
« CPU memory is not a bottleneck
Machine 1
Machine 3

GPU Local checkpoint

n D Machine Remote checkpoint

Challenge #1 and solution

» Data stored in CPU memory can get lost

» Solution: checkpoint redundancy
* Design choice: checkpoint replicas

Machine 2

Machine 1

Machine 3

 What is the optimal checkpoint placement? P Local checkpoint

72 D Machine Remote checkpoint

Goal

Checkpoint replicas

Maximize the probability of failure recovery from checkpoints
stored in CPU memory

Solution

Group placement strategy

 An example with two replicas

. Machine1 ' i Machine3
. Machine2 ! i Machine4
Group 1 Group 2
GPU Local checkpoint

D Machine Remote checkpoint

--------- ‘

B Machine 5

Machine 6

74

. Given m replicas, all machines are divided into

disjoint groups and each group has m machines

. Each machine backups a checkpoint replica for

all machines within the same group

Solution

Group placement strategy

 An example with two replicas

’- --------- ‘

Machine 1

 H H H H E = =H H = = = = = = = = = = =

" Machine 3

Machine 4

) Local checkpoint

Remote checkpoint

--------- ‘

--------- ‘

B Machine 5

Machine 6

75

Probability [%]

A formal proof in the thesis

Group placement strategy is provably optimal

100
95
90
85
80

75

m: # of checkpoint replicas
K: # of failures machines

—= k<m
—— m=2, k=2
— m=2, k=3

+«—380%

20 40 60 80 100 120
Number of machines (N)

Two checkpoint replicas can already

handle most cases!

Challenge #2

* Checkpoint traffic interferes with training traffic

Checkpoint to remote storage

[III] N Checkpoint traffic and training traffic

- have different networks

'GPU DI\/Iachine <:I Checkpoint <—Training traffic

/6

Challenge #2

* Checkpoint traffic interferes with training traffic

Checkpoint to CPU memory

[III] Checkpoint traffic and training traffic
‘t < shares the same network

/qemote storage

9000

'GPU DMachine <:I Checkpoint <—Training traffic

’r’

Solution

Traffic interleaving

 Observation: Idle timespans in the network

Computation [1] W Training traffic
Communication El El DD |:| DD El El

(a) Baseline Time
|dle timespans

/8

Solution

Traffic interleaving

* |nsert checkpoint traffic in idle timespans

Computation

Communication

Computation

Communication

Checkpoint

I ——
DRl

(a) Baseline :
— ——
H B BN B EE N

B N B N .

(c) Interleaving

79

- Training traffic

|:| Checkpoint traffic

Time

No overhead
compared to Baseline

Time

Out-of-memory issue

 Minimize the extra GPU memory consumption || Training traffic

« GPU memory is mainly used for training

* Limited spare GPU memory for checkpoints

[] B
(a) Baseline Time
B) I
ceu [[Sener
= U
GPU I:l I:(me Receiver

CPU
(b) Out of memory

80

Our design

Address out-of-memory issue

* Checkpoint partition and pipelining || Training traffic
* Reserve a GPU buffer at the receiver

* Partition the buffer to multiple parts

= B N

(a) Baseline Time

B B N

GPU Sﬁer
Time

GPU D:l Receiver

CPU

(c) Gemini

81

Our design

Address out-of-memory issue

* Checkpoint partition and pipelining || Training traffic

* Reserve a GPU buffer at the receiver

* Partition the buffer to multiple parts

* Pipeline checkpoint communications |:I D |:| |:|

(a) Baseline Time
cru [DN I Sender
Time @

GPU D:l Receiver
CPU

(c) Gemini

82

Our design

Address out-of-memory issue

* Checkpoint partition and pipelining || Training traffic
* Reserve a GPU buffer at the receiver

* Partition the buffer to multiple parts

* Pipeline checkpoint communications - - - -
(a) Baseline Time
B N B N
The GPU buffers are reused GPU I:I:l I:I:I:I:I:I:l I:I:l Sender

Time @
A small GPU buffer, e.g., 128MB, is sufficient GPU I:I:l I:I:I:I:I:I:l I:I:l Receiver

CPU

(c) Gemini

83

Implementation and evaluations

e Zen
* Built upon Horovod and PyTorch
* Hierarchical hashing algorithm is implemented in CUDA C (~500 LoC)

* Espresso
* A compression module in BytePS!1!
* Partially deployed at ByteDance GPU clusters
 Cupcake, open sourcel?]
« GEMINI
e Built upon DeepSpeed
* Deploying at AWS to support fault tolerance in LLM training

[1] Espresso: https://github.com/bytedance/byteps/tree/Espresso
[2] Cupcake: https://qithub.com/zhuangwang93/Cupcake

84

https://github.com/bytedance/byteps/tree/Espresso
https://github.com/zhuangwang93/Cupcake

Zen
128 V100 GPUs with 25Gbps network

 Communication improvement End-to-end efficiency improvement
* Speedups are normalized to AllIReduce * Training throughput
led

—-— AllReduce B OmniReduce
annn AGsparse A SparCML
5 @ Sparse PS BN Zen

A B AllReduce B OmniReduce
gooe AGsparse @ SparCML
B Sparse PS BN Zen

LSTM DeepFM NMT BERT _
DNN models The number of machines

Samples/sec
N W

[—

6.8x communication speedup LSTM, 1.7x end-to-end speedup

85

Espresso and Cupcake
64 V100 GPUs with 25Gbps network

 Espresso Cupcake
 Speedups are normalized to AllIReduce « Compared to layer-wise approaches
1e4 VGG16 + Rand-k ResNet50
1.5- BN FP32 A4 HiPress 100 —.— FP32 B HiPress
ole] BytePS-Compress @W. Espresso Bl GRACE B Cupcake
O B HiTopKComm 1 Linear-Scaling /\3 30
Q _ 2/
Q 10 —
7 2 60
o Y
c 0.5- o 40 B _ _ N . _
i Vi M gg 20
0.0
8 16 32 64 0

The number of GPUs Rand-k DGC EFSignSGD OneBit

1.8x end-to-end speedup 1.7Xx end-to-end speedup

86

GEMINI

128 A100 GPUs, 100 billion parameters

* Checkpoint frequency * Training throughput
60 100
Bl to remote pregistent storage Bl No checkpoint
= B to CPU memdry —~ gp Mmm GEMINI
= 40 §
E o
S 8X g%
> 170X p
S s 40
4
T = 20
)])

Gemini Strawman HighFreq GPT2 100B RoBERTa 100B BERT 100B

Checkpoint model states every iteration Negligible overhead on iteration time

87

Research summary

Scaling deep learning by optimizing communications

e Thesis work

‘ Communications for model training Communications for fault tolerence
OSZ[;IH% ' Data plane MO I-Vl-e;r;e;ée-r}\-e-n-t-ﬁl-a-n-el
' __Tensors with high ,
E Sparsty @l®» Checkpoint creation
E E Gemini
EuroSys 23 ! Tensors with low . Checkpoint retrieval . SOSP ‘23
- sparsity ' M Storage E
. ' system :
MLSys 23 -\ " A
Cupcake oo T

GPU DMaChine <:ICheCkpoint < Training traffic

88

Acknowledgement

Prof. Eugene Prof. Edward Prof. Anshumali Prof. Santiago

Acknowledgement

L S
P el

Acknowledgement

Research summary

Scaling deep learning by optimizing communications

e Thesis work

‘ Communications for model training Communications for fault tolerence
OSZ[;IH% ' Data plane MO I-Vl-e;r;e;ée-r}\-e-n-t-ﬁl-a-n-el
' __Tensors with high ,
E Sparsty @l®» Checkpoint creation
E E Gemini
EuroSys 23 ! Tensors with low . Checkpoint retrieval . SOSP ‘23
- sparsity ' M Storage E
. ' system :
MLSys 23 -\ " A
Cupcake oo T

GPU DMaChine <:ICheCkpoint < Training traffic

92

