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Roadmap

• Background of distributed deep learning (DDL)


• Four research projects that optimize communications in DDL

• Zen, OSDI ’25

• Espresso, EuroSys ‘23

• Cupcake, MLSys ‘23

• Gemini, SOSP ‘23


• Implementation and evaluation


• Acknowledgement
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Deep learning is everywhere

Language processing

Recommendation Voice assistant3



Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

GPU
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Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

Training dataset partitions

GPU GPU GPU GPU

Data parallelism
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Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

• Model size grows exponentially

• Towards models with trillion parameters 
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Model parallelism
GPU 1 GPU 2

GPU 3 GPU 4

GPU



Trends in deep learning

• Data grows exponentially

• Easy scale to terabytes

• Model size grows exponentially

• Towards models with trillion parameters 
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Model parallelism
GPU 1 GPU 2

GPU 3 GPU 4

GPU• Distributed deep learning

• Data parallelism

• Model parallelism



Distributed deep learning (DDL)
Training system

GPU Machine

Storage 
system

Checkpoint Training traffic

• Two components

• GPU machines for model training

• Storage system that stores checkpoints for fault tolerance
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Distributed deep learning (DDL)
Training system

GPU Machine Checkpoint Training traffic

• Two components
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Storage 
system

Data plane Management plane



Communications in DDL
In both planes

GPU Machine Checkpoint Training traffic

• Communications are bottlenecks for scalability
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Storage 
system

Data plane Management plane
Communications for model training Communications for fault tolerence

Gradient 
synchronization Checkpoint



Goal of this thesis

GPU Machine Checkpoint Training traffic

• Communications are bottlenecks for scalability
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Storage 
system

Data plane Management plane
Communications for model training Communications for fault tolerence

Gradient 
synchronization Checkpoint

Recognize and tackle the communication obstacles within DDL to 
enhance its scalability



Thesis statement
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This thesis demonstrates the feasibility of mitigating communication bottlenecks in 
distributed deep learning by utilizing current hardware resources within a training 
system, complemented by intelligent traffic and resource scheduling algorithms.



Research summary
Scaling deep learning by optimizing communications

• Mitigate data-plane communication bottlenecks
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GPU Machine Checkpoint Training traffic
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Tensors with high 
sparsity
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Research summary
Scaling deep learning by optimizing communications

• Mitigate data- and management-plane communication bottlenecks
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Research summary
Scaling deep learning by optimizing communications

• Thesis work
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The next research project
Scaling deep learning by optimizing communications

• Thesis work
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Gradient synchronization
Dense tensor synchronization among GPUs

• Communication and aggregation
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[1] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020

[2] Horovod: fast and easy distributed deep learning in TensorFlow, arXiv 2018

Dense tensors



Sparsity in gradient tensors
Non-zero gradients in tensors

• Gradients can be zero
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• Statistics from popular DNN models
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Synchronization of sparse tensors 
Opportunities

• Communicate sparse tensors, i.e., non-zero gradients

• Greatly reduces the amount of traffic volume

• Potentially shortens communication time

20

0 1.4 0 2.5 0 0 00

0 0.9 0 1.8 0 00

GPU 1

GPU 2

0 0 2.6 00GPU 3 0

0

0 -0.2

0 2.3 2.5 4.4 00 GPU 1

GPU 2

GPU 3

0 -0.2

0 2.3 2.5 4.4 000 -0.2

0 2.3 2.5 4.4 000 -0.2

1.4

0.9

2.6

Sparse tensorsDense tensors

What is the optimal scheme to 
synchronize sparse tensors?

2.5

1.8

-0.2



Contributions
Zen

• We comprehensively analyze and understand the fundamentals of sparsity


• We systematically explore the design space of schemes for the first time

• Four dimensions to describe any scheme

21

• We find the provably optimal scheme from the design space 


• We propose a novel hierarchical hashing algorithm that uses parallel 
computing on GPUs to realize the optimal scheme

• We propose a new data format to represent sparse tensors to minimize 
the overhead required for indices



Contributions
Zen

• We comprehensively analyze and understand the fundamentals of sparsity


• We systematically explore the design space of schemes for the first time

• Four dimensions to describe any scheme


• We find the provably optimal scheme from the design space


• We propose a novel hierarchical hashing algorithm that uses parallel 
computing on GPUs to realize the optimal scheme


• We propose a new data format to represent sparse tensors to minimize the 
overhead required for indices
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How to describe the design space?
Four dimensions

• Sparse tensor before synchronization

23
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How to describe the design space?
Four dimensions

• Sparse tensor before synchronization
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• Communication dimension
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How to describe the design space?
Four dimensions

• Sparse tensor before synchronization
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• Aggregation dimension

25

1.2 0.7 0.3 2.5

GPU 0 GPU 1 GPU 2 GPU 3
Communication pattern

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.9 2.8

4.7

G3

G1 G3

G0 G1 G2 G31.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

1.2 0.7 0.3 2.5

4.7

(a) Incremental (b) One-shot 

Balance

Partition

Aggregation

Communication

Hierarchy Point-to-point

Incremental One-shot 

Ring

Centralization Parallelism 

Imbalanced Balanced 



How to describe the design space?
Four dimensions

• Partition dimension
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How to describe the design space?
Four dimensions

• Balance dimension
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Balance
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Expressiveness
Describe schemes for sparse tensor synchronization

• All existing schemes can be described by the four dimensions
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[1] Pytorch distributed: Experiences on accelerating data parallel, VLDB 2020

[2] Sparcml: High-performance sparse communication for machine learning, SC 2019

[3] Scaling distributed machine learning with the parameter server, OSDI 2014

[4] Efficient sparse collective communication and its application, SIGCOMM 2021

• The four dimensions can describe the whole design space



What is the optimal scheme?
Based on the four dimensions

• Problem statement

29

What is the optimal scheme to minimize the communication 
time of sparse tensor synchronization in DDL?



Find the optimal scheme
Based on the four dimensions

• “Balanced Parallelism”
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Find the optimal scheme
Based on the four dimensions

• “Balanced Parallelism”
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• Sketch of proof 

• Parallelism can leverage the overlaps among sparse tensors

• Balanced pattern minimizes communication time

• Point-to-point can avoid repetitive communications

We have a formal proof in the thesis



Numerical comparison
Take sparse tensors in NMT as examples

• Communication time of sparse tensor synchronization
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No existing realization of Balanced Parallelism

35%

Balanced 
Parallelism



How to realize “Balanced Parallelism”?

• Skewed distribution of non-zero gradients
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How to realize “Balanced Parallelism”?

• Skewed distribution of non-zero gradients

34

• Challenge: how to achieve balanced communications? 
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[2] Efficient sparse collective communication and its application, SIGCOMM 2021
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Solution: A hierarchical hashing algorithm
Parallel computing on GPUs for hashing

• Level-1: hash indices of non-zero gradient for partitions

35
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Solution: A hierarchical hashing algorithm
Parallel computing on GPUs for hashing

• Level-2: rehash indices for available locations within each partition
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15
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Solution: A hierarchical hashing algorithm
Properties

• Level-2: rehash indices for available locations within each partition
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Guaranteed load balance

Small hash memory size

Strength in parallel computing

Hash consistency among workers

No information loss
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The next research projects
Scaling deep learning by optimizing communications

• Thesis work
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Gradient compression for communications

• Some deep learning models don’t have high sparsity

39



Gradient compression for communications

• Some deep learning models don’t have high sparsity

• Gradient compression (GC) shrinks communication traffic volume

• It has negligible impacts on model accuracy [1]

[1] GRACE: A compressed communication framework for distributed machine learning, ICDCS ‘21 40



Gradient compression for communications

• Some deep learning models don’t have high sparsity

• Gradient compression (GC) shrinks communication traffic volume

41

• Sparsification

FP32

8 bits

2 bits

1 bit

75%

94%

97%

1.1 2.2 3.4 4.5 1.6 3.4 4.5
Top k

0.9

• Quantization

Gradient 
format



Gradient compression (GC) in theory

• GC reduces communication overhead

42

timeAfter compression

Communication

(Theoretically)

Communication 
overhead 
reductionT1 T2

T0 T1 T2

T0 T1 T2

Computation

Communication

• However, GC algorithms are designed from an algorithmic perspective

T0



Gradient compression (GC) in reality
Use GPU for compression

• GC incurs computation overhead in practice
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Computation
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Unleash the benefits of GC
Espresso: search for optimal compression strategy

• Contributions

• We leverage both GPUs and CPUs to perform gradient compression simultaneously 

• We design a decision tree abstraction to holistically describe the search space of 

compression strategies 

• Whether to compress each tensor? 

• the type of compute resources (e.g., CPUs or GPUs) for compression? 

• the communication schemes for compressed tensors?


• We devise an compression decision algorithm that selects near-optimal strategies 
in seconds to optimize training throughput of DDL


• Espresso is partially deployed at ByteDance GPU cluster

4444



Unleash the benefits of GC
Cupcake: Fuse tensors for compression

4545

<

• Deep learning models have many small tensors (<4MB)

• Existing approaches compress tensor by tensor

• Invokes compress operations for each tensor


• fixed overheads to launch and execute kernels in CUDA, even for small tensors



Contributions of Cupcake 

46

• We propose a general compression optimizer with a fusion fashion for GC 
algorithms to accelerate the training throughput 


• We design an algorithm that finds the optimal fusion strategy in seconds


• We build a compression-enabled system with this compression optimizer



timeAfter tensor fusion
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Communication
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Cupcake
Fuse tensors for compression
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Challenge
Trade-off between compression and communication overhead

T0
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After tensor fusion
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Goal
Trade-off between compression and communication overhead
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After tensor fusion
Find the optimal fusion strategy for compression-enabled DDL to 

maximize the training throughput



Cupcake
Find the optimal fusion strategy

• Difficult to formulate the iteration time
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Computation Communication Compression OverlappingIteration time =

T0Computation

Compression

Communication

time
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But overlapping time is determined by the intricate interactions among tensors



Search space

• Exponential time to find the optimal strategy with brute force
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T0Computation T1 T2 T3 T4

Fusion F0
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Time complexity: O( )2N



Pruning techniques #1  

No need to examine all cases for the formation of F0
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Pruning techniques #1  

No need to examine all cases for the formation of F0
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Pruning techniques #1  

No need to examine all cases for the formation of F0
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Pruning techniques #1  

No need to examine all cases for the formation of F0
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Pruning techniques #2 

Fuse more tensors based on the communication progress
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Pruning techniques #2 

Fuse more tensors based on the communication progress
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Pruning techniques #2 

Fuse more tensors based on the communication progress
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Cupcake searches the whole search space with the two pruning 
techniques and it can find the optimal fusion strategy in seconds

We have a formal proof in the thesis



The next research project
Scaling deep learning by optimizing communications

• Thesis work
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Large Language Model (LLM)
Models towards trillion parameters

• Recent LLMs

Larger training 
models

More GPUs 
involved

Longer training 
time

60



Failures are frequent

• Software failures • Hardware failures

[1] Opt: Open pre-trained transformer language models, arXiv ’22

• OPT-175B: 100+ failures[1] in two months

Link failures

Switch failures

Library failures

Remote storage failures

GPU failures

61



Checkpoint for failure recovery

• How checkpoint works?

Time

Failure

Wasted time

Periodically checkpoint 
the model states

Resume from the last 
checkpoint Redo the computation

62

X
Checkpoint

Desire higher checkpoint frequency



Checkpoint for failure recovery

• How checkpoint works?

Time

Failure

Wasted time

Periodically checkpoint 
the model states

Resume from the last 
checkpoint Redo the computation

63Remote storage

Checkpoint

Desire higher checkpoint frequency



Checkpoint in LLM
Limited checkpoint frequency

• Checkpoint to remote storage takes a long time

• Checkpoint frequency is limited by the checkpoint time

64

Failure recovery in large model training

Time

Failure

The wasted time

Checkpoint
Retrieval

Iteration

ckpt 1

100 200 300 310 200

tckpt
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Checkpoint in LLM
Prohibitive failure recovery overhead

• Costly wasted time 

• Even with the highest checkpoint frequency

65

• Significant GPU resources are wasted due to failure recovery

• Thousands of GPUs involved

• Hundreds of failures during training



Contributions 

66

• We propose the first system that uses CPU memory for checkpointing to 
enable fast failure recovery

• No assumptions on the underlying parallelism strategy


• We design a provably optimal checkpoint placement strategy on CPU memory


• We design a traffic scheduling algorithm that orchestrates training and 
checkpoint traffic to eliminate the interference on training throughput


• Gemini is being deployed at AWS to provide fault tolerance to LLM training



Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

CPU memory size is sufficient to store checkpoints

67



Gemini
Checkpoint to CPU memory

• CPU memory is much larger than GPU memory

• Checkpoint to CPU memory enables a much higher frequency

68

Remote storage

Checkpoint to remote storage

GPU Machine CPU memory

Low Bandwidth

Checkpoint

Checkpoint to CPU memory

High Bandwidth



Challenge #1

• Data stored in CPU memory can get lost

69



Challenge #1 and solution

• Data stored in CPU memory can get lost

70

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

1

Machine 1 1

Machine 2

Machine 3
1

X

In case of failures

GPU

Machine

Local checkpoint

Remote checkpoint



Challenge #1 and solution

• Data stored in CPU memory can get lost

71

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• Why not Erasure Coding?

• Prohibitive computation cost

• CPU memory is not a bottleneck



Challenge #1 and solution

• Data stored in CPU memory can get lost

72

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• What is the optimal checkpoint placement?



Goal
Checkpoint replicas

• Data stored in CPU memory can get lost

73

• Solution: checkpoint redundancy

• Design choice: checkpoint replicas

1

Machine 1 1

Machine 2

Machine 3
1

GPU

Machine

Local checkpoint

Remote checkpoint

• What is the optimal checkpoint placement?

Maximize the probability of failure recovery from checkpoints 
stored in CPU memory



Solution
Group placement strategy

• An example with two replicas
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1
Machine 1

Machine 2

Machine 3

Machine 4

2

2
1

3
4

4
3

Group 1 Group 2

GPU

Machine

Local checkpoint

Remote checkpoint

Machine 5

Machine 6 

5
6

6
5

Group 3

1. Given m replicas, all machines are divided into 
disjoint groups and each group has m machines

2. Each machine backups a checkpoint replica for 
all machines within the same group 



Solution
Group placement strategy

• An example with two replicas
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GPU

Machine

Local checkpoint

Remote checkpoint

Group placement strategy is provably optimal

Two checkpoint replicas can already 
handle most cases!

m: # of checkpoint replicas

k: # of failures machines

1
Machine 1

Machine 2

Machine 3

Machine 4

2

2
1

3
4

4
3

Group 1 Group 2

Machine 5

Machine 6 

5
6

6
5

Group 3

A formal proof in the thesis

93%

80%



Challenge #2

• Checkpoint traffic interferes with training traffic
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GPU Machine

Remote storage

Checkpoint Training traffic

Checkpoint to remote storage

Checkpoint traffic and training traffic  
have different networks



Challenge #2

• Checkpoint traffic interferes with training traffic
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GPU Machine

Remote storage

Checkpoint Training traffic

Checkpoint to CPU memory

Checkpoint traffic and training traffic  
shares the same network



Solution
Traffic interleaving

• Observation: Idle timespans in the network
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Computation

Communication

Time(a) Baseline

Training traffic

Idle timespans



Solution
Traffic interleaving

• Insert checkpoint traffic in idle timespans
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Computation

Communication

Time(a) Baseline

Training traffic

Computation

Communication

Time(c) Interleaving

Checkpoint

Checkpoint traffic

No overhead 
compared to Baseline



Out-of-memory issue
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Time(a) Baseline

Training traffic• Minimize the extra GPU memory consumption

• GPU memory is mainly used for training

• Limited spare GPU memory for checkpoints

GPU

GPU

CPU

Time

Sender

Receiver

(b) Out of memory

X

X



Our design
Address out-of-memory issue

• Checkpoint partition and pipelining

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple parts
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Our design
Address out-of-memory issue

• Checkpoint partition and pipelining

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple parts

• Pipeline checkpoint communications
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Our design
Address out-of-memory issue

• Checkpoint partition and pipelining

• Reserve a GPU buffer at the receiver

• Partition the buffer to multiple parts

• Pipeline checkpoint communications
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Sender

(a) Baseline

Receiver

(c) Gemini

Training traffic

1 2

Time

Time

GPU

GPU

CPU

The GPU buffers are reused

1 2 1 2 1 2 1 2A small GPU buffer, e.g., 128MB, is sufficient



Implementation and evaluations

• Zen

• Built upon Horovod and PyTorch

• Hierarchical hashing algorithm is implemented in CUDA C (~500 LoC)


• Espresso

• A compression module in BytePS[1]

• Partially deployed at ByteDance GPU clusters 


• Cupcake, open source[2]

• GEMINI

• Built upon DeepSpeed

• Deploying at AWS to support fault tolerance in LLM training

[1] Espresso: https://github.com/bytedance/byteps/tree/Espresso

[2] Cupcake: https://github.com/zhuangwang93/Cupcake 84

https://github.com/bytedance/byteps/tree/Espresso
https://github.com/zhuangwang93/Cupcake


Zen
128 V100 GPUs with 25Gbps network

• Communication improvement

• Speedups are normalized to AllReduce
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6.8x communication speedup LSTM, 1.7x end-to-end speedup

• End-to-end efficiency improvement

• Training throughput



Espresso and Cupcake
64 V100 GPUs with 25Gbps network

• Espresso

• Speedups are normalized to AllReduce

86

1.7x end-to-end speedup

• Cupcake

• Compared to layer-wise approaches

1.8x end-to-end speedup

VGG16 + Rand-k ResNet50



GEMINI
128 A100 GPUs, 100 billion parameters

• Checkpoint frequency

8X170X
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• Training throughput

Negligible overhead on iteration timeCheckpoint model states every iteration



Research summary
Scaling deep learning by optimizing communications

• Thesis work
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GPU Machine Checkpoint Training traffic

Data plane Management plane
Communications for model training Communications for fault tolerence

Tensors with high 
sparsity

Zen
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