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Abstract. With the rapid growth in mobile computing, massive amounts
of data and computing resources are now located at the edge. To this
end, Federated learning (FL) is becoming a widely adopted distributed
machine learning (ML) paradigm, which aims to harness this expanding
skewed data locally in order to develop rich and informative models. In
centralized FL, a collection of devices collaboratively solve a ML task
under the coordination of a central server. However, existing FL frame-
works make an over-simplistic assumption about network connectivity
and ignore the communication bandwidth of the different links in the
network. In this paper, we present and study a novel FL algorithm, in
which devices mostly collaborate with other devices in a pairwise man-
ner. Our nonparametric approach is able to exploit network topology to
reduce communication bottlenecks. We evaluate our approach on various
FL benchmarks and demonstrate that our method achieves 10× better
communication efficiency and around 8% increase in accuracy compared
to the centralized approach.

Keywords: Machine Learning · Federated Learning · Distributed Sys-
tems.

1 Introduction

The rapid growth in mobile computing on edge devices, such as smartphones
and tablets, has led to a significant increase in the availability of distributed
computing resources and data sources. These devices are equipped with ever
more powerful sensors, higher computing power, and storage capability, which is
contributing to the next wave of massive data in a decentralized manner. To this
end, federated learning (FL) has emerged as a promising distributed machine
learning (ML) paradigm to leverage this expanding computing and data regime
in order to develop information-rich models for various tasks. At a high-level, in
FL, a collection or federation of devices collaboratively solve a ML problem (i.e.,
learn a global model) under the coordination of a centralized server. The crucial
aspect is to accomplish the task while maintaining the data locally on the device.
With powerful computing resources (e.g., cloud servers), FL can scale to millions
of mobile devices [13]. However, with the continual increase in edge devices, one
of the vital challenges for FL is communication efficiency [3, 13, 17].

Unlike classical distributed ML, where a known architecture is assumed, the
structure for FL is highly heterogeneous in terms of computing resources, data,
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and network connections. Devices are equipped with different hardware, and are
located in dynamic and diverse environments. In these environments, network
connections can have a higher failure rate on top of varying communication and
connection patterns. For example, 5% and more of the devices participating in
the single round of training may fail to complete training or completely drop
out of communication [13]. The device network topology may evolve, which can
be useful information for communication efficiency. In FL, the central server
has the critical role of aggregating and distributing model parameters in a back
and forth manner (i.e., rounds of communication) with the devices to build and
maintain a global model. One natural solution is to have powerful central servers.
However, this setup comes with high costs and are only affordable for large
corporations [13]. Moreover, overly relying on a central server can suffer from
single point failure [30] and communication bottleneck.

An alternative to the client-server architecture is peer-to-peer (P2P) network-
ing. P2P dramatically reduces the communication bottleneck by allowing devices
to communicate with one another. Given this insight, we propose a FL framework,
which we dub as FedP2P, that leverages and incorporates the attributes of a P2P
setting. FedP2P significantly reduces the role and communication requirements
of the central server. Additionally, P2P naturally utilizes network topology to
better structure device connections. It is widely accepted that communication
delays increase with the node degrees and spectral gap of the network graph [13].
Explicit consideration of network topology increases communication efficiency
such as wall-clock time per iteration. Empirically, we show FedP2P outperforms
the established FL framework, FedAvg [20] on a suite of FL benchmark datasets
on both computer vision and language tasks, in addition to two synthetic data,
involving three different model architectures. With the same number of com-
munication rounds with a central server, FedP2P achieves an 8% increase in
accuracy. With the same number of devices participating in the training, FedP2P
can achieve 10× speed up in communication time.

2 Preliminary and Related Work

FL is a distributed ML paradigm, where data reside on multiple devices, and
under the coordination of a centralized server, the devices collaboratively solve
an ML problem [13]. Moreover, and importantly, data are not shared among
devices, but instead, model aggregation updates, via communication between
server and devices, are used to optimize the ML objective. Naturally, what we
can expect as corollaries, and as key challenges, from this setting are: a massive
number of devices, highly unbalanced and skewed data distribution (i.e., not
identically and independently distributed, and limited network connectivity (e.g.,
slow connections and frequent disconnections). In FL, the optimization problem
is defined as

min
θ
f(θ) where f(θ) ,

N∑
i=1

piFi(θ). (1)
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Fig. 1: (a) Structure for centralized FL framework, in which central server di-
rectly communicates with all devices for model distribution and aggregation (b)
Communication flow for centralized FL (FedAvg). The steps are 1: server G sends
global model to clients, 2: G designates client devices for training (C1, C3, C5),
3: selected client devices train on local data, 4: devices send parameters of the
trained model back to G, 5: G aggregates the trained parameters, and the process
repeats. (b) Structure for our proposal (FedP2P). Dash circle represents local
P2P network, in which devices perform pairwise communication. The central
server only communicates with a small number of devices, one device within each
local P2P network here. (d) Communication flow for FedP2P. The steps are: 1:
form P2P network, 2: all devices train in parallel on local data, 3: devices can
aggregate/synchronize models via Allreduce, 4: G receives aggregated parameter
from each partition (not from all devices), 5: G aggregates the parameters from
the partitions to get global parameter, and 6: G sends global parameter to the
P2P networks (not to all devices).
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N is the number of devices, pi ∈ [0, 1], and
∑N
i=1 pi = 1. For supervised classifi-

cation, we typically have Fi(θ) = `(Xi, Yi; θ), where (Xi, Yi) are the data and θ
are the model parameters. ` is some chosen loss function for client devices Ci.
We assume data is partitioned across N client devices, which give rise to poten-
tially different data distributions. Namely, given data D partitioned into samples
D1, . . . , DN such that Di corresponds to Ci, the local expected empirical loss
is Fi(θ) = EXi∼Di

[fi(Xi; θ)] where pi=|Di|/|D|. Di varies from device to device
and is assumed to be non-IID. The federated averaging (FedAvg) algorithm [20]
was first introduced to optimize the aforementioned problem, which we describe
next.

2.1 Centralized Federated Learning: Federated Averaging

FedAvg is a straightforward algorithm to optimize Eq. (1). The details are shown
in Algo. 1 and Fig. 1(b). The global objective, orchestrated by a central server G,
is optimized locally via the Fi functions applied to the local data on the devices.
Let C = {C1, . . . , CN} be the collection of client devices that are willing and
available to participate in training a global model for a specific machine learning
task. At each training round t, the central server randomly selects a subset Z ⊂ C
devices to participate in round t of training. G sends to each selected device a
complete copy of the global model parameters θtG. Each device trains Fi, via
stochastic gradient descent (SGD), initialized with θtG using its own training
data Di for a fixed number of epochs E, batch size O, and according to a fixed
learning rate η. Subsequently, the client devices sends the updated parameters
θt+1
Ci

back to G, where G performs a model synchronization operation. This
process is repeated for T rounds, or until a designated stopping criterion (e.g.,
model convergence). Unlike traditional distributed machine learning, FedAvg
propose to average model parameters (i.e., Aggregate(·) operation in Algo. 1)
instead of aggregating gradients to dramatically reduce communication cost.
FedAvg started an active research field on centralized federated learning, which
assumes that all communications occur directly with the central server.

2.2 Multi-Model Centralized Federated Learning

Here we focus on related FL settings, where the goal is to learn multiple models
using the idea of clustering. These methods mostly utilize the information from
model parameters for device clustering. All these methods concentrate on opti-
mization while ignoring practical communication constraints. For example, [5]
uses a hierarchical k-means clustering technique based on similarities between
the local and global updates. At every round, all devices are clustered accord-
ing to the input parameter k, which makes this technique not practical in a
real-world FL setting. [10] focuses on device clustering. They assume k different
data distributions, and the server maintains k different global models. A subset
of devices is sampled at each round, and all k models are sent to each of the
devices. The sampled devices then optimize the local objective, using each of
the k models, and selects the model with the lowest loss. The updated model
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Algorithm 1 Federated Averaging (FedAvg)

Input: T, |Z|, η, O,E, θ0G
for t = 0 to T−1 do

Server G samples subset of client devices Ci ∈ Z
and sends θtG to sampled devices: θtCi

← θtG
for each Ci ∈ Z in parallel do

//Device trains on local data with

//step size η, batch size O, epochs E
θt+1
Ci
← minFi(θ

t
Ci

)
end for

end for
θt+1
G ← Aggregate

(
θt+1
C1

,∀Ci ∈ Z
)

with the lowest loss, which also corresponds to the device’s cluster identity, is
sent back to the server for aggregation based on the clusters. The process is
repeated for a given number of rounds. This method can be interpreted as a case
of k-means with subsampling. The need to communicate k models to each device
creates an information communication bottleneck. We emphasize that our goal is
not to solve a clustering problem.

2.3 Decentralized Federated Learning

Decentralized FL is also an active area of research, and we focus on the cor-
responding FL setting that involves P2P communication in this section. FL
utilizing P2P communication has been previous proposed by [15]. However, a
graph structure is imposed, and communication is based on the graph structure
and limited to one-hop neighbors. Also, graph topology can change over time.
The algorithm requires potentially complex Bayesian optimization. In addition,
the experiments are limited to 2 nodes.

P2P ML, where the goal is to learn personalized models, as opposed to a single
global model, has been proposed by in [30] and under strong privacy requirements
by [2]. The gossip protocol is a P2P communication procedure based on how
epidemics spread [9]. Gossip algorithms are distributed asynchronous algorithms
with applications to sensors, P2P, and ad-hoc networks. It has been used to study
averaging as an instance of the distributed problem [4], and successfully applied
in the area of decentralized optimization [8, 14]. Also, several works focus on
decentralized FL from the perspective of optimization, decentralized SGD [19,
27, 26].

2.4 Efficient Pairwise Communication

Allreduce [24, 29] is a collective operation that reduces the target tensors in all
processes to a single tensor with a specified operator (e.g., sum or average) and
broadcasts the result back to all processes. It is a decentralized operation and
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only involves P2P communication for the reduction (e.g., model synchroniza-
tion). Because Allreduce is a bandwidth-optimal communication primitive and
is well-scalable for distributed training, it is widely adopted in distributed ML
frameworks [23, 25].

3 Less Centralized Federated Learning

In this section, we outline our federated learning framework, FedP2P, and provide
a detailed discussion of the critical aspects of our design. With FedP2P, we exploit
efficient P2P communication in conjunction with a coordinating center that does
high-level model aggregation.

3.1 Proposed Framework: FedP2P

The structure of centralized FL follows a star graph, in which the central server
directly communicates with all client devices (see Fig. 1(a)). On the contrary, we
aim to reorganize the connectivity structure in order to distribute both the train-
ing and communication on the edge devices by leveraging P2P communication. To
this end, we form L local P2P networks in which client devices perform pairwise
communication within each P2P network, which we refer to as FedP2P. With
FedP2P, the central server only communicates with a small number of devices,
one from each local P2P network (see Fig. 1(c)).

Here, we describe the training process. The details are shown in Algo. 2 and
Fig. 1(d). To better understand our framework, we follow the centralized setup
by describing the whole training process in T rounds. We describe the process as
three phases for each round as follows.

1. Form Local P2P Network: At the start of each round t, the central server
randomly partitions N devices into L local P2P networks Z1, . . . , ZL. The
central servers distribute the global model θt−1 from the previous round to
each P2P network. Note that the central server only communicates with one
or a few devices from each P2P network for the global model distribution. In
practice, L is not a tuning parameter, but can be precisely calculated to min-
imize communication cost given devices bandwidth and the desired number
of total participating devices in each round. We provide more information on
the choice of L in Section 3.2.

2. P2P Synchronization: Within a local P2P network Zl, part of or all devices
train the local P2P network model θtZl

using its own data in parallel. Once
the devices finish training, the model is locally synchronized within Zl. This is
done via an Aggregate(·) operation, which we define as θZt+1

l
←
∑
Ci∈Z γiθCi

,

where γi = |Di|/
∑
i |Di|. This process can be conducted one or more times,

and we can efficiently accomplish a single P2P network model synchronization
using the Allreduce approach. Note that all training and communication
inside each local P2P network are conducted independently and in parallel.
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Algorithm 2 Federated Peer-to-Peer (FedP2P)

Input: T, L,Q, η,O,E
for t = 0 to T−1 in parallel do
Z1, Z2, . . . , ZL //Form P2P networks

for l = 1 to L in parallel do
for Ci ∈ Z ⊆ Zl s.t. |Z| = Q in parallel do

//Device trains on local data with

//step size η, batch size O, epochs E
θt+1
Ci
← minFi(θ

t
Ci

)
end for
θt+1
Zl
← Aggregate

(
θt+1
Ci

,∀Ci ∈ Z
)
//Allreduce

end for
θt+1
G ← Aggregate

(
θt+1
Z1

, . . . , θt+1
ZL

)
end for

3. Global Synchronization: The central server G globally aggregates the
updated models, θt+1

Zl
for l = 1, . . . , L, from every local P2P network, and

perform model averaging over L models. Namely, θt+1
G ← L−1

∑L
l=1 θ

t+1
Zl

.
Since each local P2P network is already locally synchronized, G gathers
models from one device for each P2P network.

In order to obtain the global model among all P2P networks, our proposed
framework also utilizes a central coordinator for global model synchronization.
However, note that the communication and workload for the central coordinator
in FedP2P are significantly reduced. Assume both FedP2P and FedAvg utilizes
P participating devices in a single round of training. The FedAvg central server
communicates with P devices and perform model synchronization among P
models. In contrast, the FedP2P central server only communicates with K devices
and perform model synchronization among K cluster models where P � K.
From another perspective, we assume the central server has a fixed bandwidth
that can be devoted to coordinating federating training. FedP2P allows for many
more devices to participate within each global round, enabling the global model
to train on more data in a single global communication round. FedP2P distributes
both computation workloads and communication burden to the edge, and we will
provide a detailed comparison of communication cost in Section 3.2.

Potential privacy and trust problems of FedP2P arise from two levels of
cooperation: 1) the cooperation between the central server and the device within
each local P2P network; and 2) the cooperation within each local P2P network.
The first level is the same as standard centralized FL and we expect established
solutions such as cryptographic protocols proposed by [3] to work well for FedP2P.
The second level follows decentralized FL settings. Existing secure aggregation
protocols such as confidential smart contract [13] can be adopted.
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3.2 Communication Efficiency

The central server bandwidth becomes the performance bottleneck in FedAvg

when there are a large number of sampled devices. FedP2P alleviates this server-
device bottleneck through decentralization. Namely, the server only needs to
communicate with a subset of the sampled devices, which we refer to as agents.
However, it incurs additional communication overhead inside P2P networks
because the agents have to communicate with other devices. FedP2P needs to
balance the trade-off between the server-agent and agent-device communication
overhead.

We model and analyze the communication cost of FedAvg and FedP2P in this
section. To simplify the analysis, we define Bd as the bandwidth between each
device-device pair for the training, Bs as the total bandwidth capacity from the
server to the devices (i.e., uplink bandwidth of server), and M as the model size.
We assume all P2P networks have the same P number of devices participating in
one single round of model training.

Communication Efficiency of FedAvg: There are two main steps in the
data transmission: 1) the model distribution from the server to the sampled
devices has the communication time of MP/Bs; and 2) the model aggregation
from the devices to the server has the communication time of αMP/Bs, where
1/αBs is the total bandwidth capacity from the devices to the server (i.e.,
downlink bandwidth of server). Note that α ≥ 1 since the upload bandwidth of
devices is typically smaller than their download bandwidth. Let Havg, denoting
the communication time in FedAvg, be Havg = (1 + α)MP/Bs.

Communication Efficiency of FedP2P: There are four main steps in the
data transmission: 1) the model distribution from the server to the agent in each
cluster has the communication time of LM/Bs; 2) the model distribution from
the agent to the sampled devices in each P2P network has communication time
of PM/LBd, where P/L is the number of sampled devices in each P2P network;
3) local model synchronization at the end of each local training round has the
communication time of 2M/Bs (The exact communication time of Allreduce is
2(n−1)M
nBs

, where n is the number of workers); and 4) global model synchronization
at the end of each global training round has the communication time of αLM/Bs.
Let Hp2p denote the communication time in FedP2P be defined as

Hp2p =
(1 + α)LM

Bs
+
PM

LBd
+

2M

Bd
.

The choice of L is a way to balance the trade-off between the server-agent
and agent-device communication overhead. A small L results in the low server-
agent communication overhead because the server just communicates with a
small number of agents, while it increases the agent-device communication time
because each agent needs to broadcast the model to more devices; and vice
versa. Hp2p reaches its minimum: minHp2p = 2M

Bd
(PL + 1) when L = A

√
P , where

A =
√

Bs

(1+α)Bd
is a constant in a federated learning system. Define R =

Havg

minHp2p
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and γ = Bs

Bd
. Then

R =
(1 + α)P

2
√
γ(1 + α)P + 2γ

. (2)

R > 1 indicates that FedP2P has lower communication overhead than FedAvg.
Eq. (2) shows that the value of R increases with 1) the increasing number of
sampled devices; 2) the decreasing gap between the bandwidth capacities of the
server and devices; and 3) the increasing gap between the server’s uplink and
downlink bandwidth capacities.

3.3 Theoretical Insight

In this section, we provide some theoretical insight into the performance of FedP2P.
We instantiate the framework of [18] (i.e., Theorems 1, 2, and 3; for spacing, we
omit the details) to simplify the analysis. Similarly, let F ∗ and F ∗i be the minimal

values of F and Fi. Let Γ = F ∗−
∑N
i=1 piF

∗
i . The magnitude of Γ quantifies the

degree of non-IID (i.e., heterogenity) such that Γ goes to zero as the number of
non-IID samples decrease. We also apply the same assumptions on smoothness,
convexity, and bounds on variance and norm of the the stochastic gradient.
Notation-wise, we substitute θG = w, J =C, U =L as the Lipschitz constant, and
V 2 =G2 to uniformly bound the expected squared norm of stochastic gradients
from the top. First, FedP2P satisfies the following base case.

Corollary 1. Let
∑L
l=1 |Zl| = N and the aggregation at the server G be defined

as θtG ←
∑L
l=1 ψlθ

t
Zl

such that ψl = |D|−1
∑
Ci∈Zl

|Di|. Then the same bound in
Theorem 1 [18] holds for FedP2P.

Corollary 1 is restrictive since we cannot hope to compute all ψl, and the total
number of devices participating varies due to the stragglers effect in practice.
However, we next analyze Theorems 2 and 3 under the FedP2P scheme at the level
of server G, which highlights an advantage of FedP2P. To ground the analysis,
under the special case of one device P2P network, we have the following.

Corollary 2. Let
∑L
l=1 |Zl| < N and |Zl| = 1, ∀l. Then the same bound in

Theorem 2 and 3 [18] holds for FedP2P.

Here we focus on the J term in Theorems 2 and 3. From Theorem 2, we have
J = 4K−1E2V 2, where K is number of devices for aggregation. However, note
that with FedP2P, effectively, we have J = 4(K

∑
l |Zl|)−1E2V 2 at G. Therefore,

J is reduced by a factor of
∑
l |Zl| and thus, improves the bound. Similarly, from

Theorem 3, we have J = 4(N−1)−1K−1(N−K)E2V 2. However, at G, the terms
(N −K) shrinks, and K−1 grows significantly under FedP2P since K increases
by a factor of

∑
l |Zl|, thereby also improves the bound.

4 Experiments

In this section, we present the experiment results that demonstrate the perfor-
mance between FedP2P and FedAvg from various perspectives. Specifically, we
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Fig. 2: 2(a), 2(b), 2(c), 2(d), and 2(e) are average testing accuracy across devices
as a function of global communication rounds. FedP2P shows higher and much
smoother accuracy curves on all real datasets and two synthetic datasets. 2(f)
plots the loss during training on FEMNIST. FedP2P gives a smooth convergence
curve.

focus on answering the following questions: 1) how does FedP2P perform com-
paring to centralized methods on model accuracy? 2) does FedP2P outperform
centralized federated learning in terms of communication efficiency? 3) How
robust is FedP2P handling network instability such as stragglers? 4) How does
FedP2P perform with different parameters?

4.1 Datasets

Synthetic Datasets: In FL, the data on devices are non-IID. Following the
taxonomy described in [13], non-IID is decomposed into five regimes: 1) covariance
shift, 2) label probability shift, 3) same label with different features, 4) same
features with different labels, and 5) quantity skew. To effectively explore and
understand the various non-IID situations, we create two synthetic datasets:
SynCov and SynLabel. The setup is similar to [17]. SynCov simulates covariance
shift with quantity skew, and SynLabel simulates label probability shift with
quantity skew. The high-level data generation process is as follows. First, we
designateN(= 100) number of client devices Ci. Next, we sample from a lognormal
distribution to determine the number of data points for each Ci. Let X be the
features and Y be the class labels, where feature dimension is 60 and number
of classes is 10. Then, we sample (X,Y ) from the data distribution Pi(X,Y )
for Ci. The non-IID data refers to differences between Pi(X,Y ) and Pj(X,Y )
for two different client devices Ci and Cj . Note that we can factor Pi(X,Y ) as
Pi(Y |X)Pi(X) or Pi(X|Y )Pi(Y ). Using this factorization, the details of the data
generation process is follows.
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Fig. 3: Numerical comparison between FedP2P and FedAvg on normalized commu-
nication time. Black line is FedP2P and others are FedAvg with various bandwidth
settings. FedAvg outperforms FedP2P only when the number of sampled devices
is small or the device bandwidth is extremely poor. Detailed discussion is in
Section 4.4.

– SynCov: Pi(X) varies and P (Y |X) shared among client devices Ci. We
parameterize Pi(X) with a Gaussian distribution N (µi, σi) and P (Y |X)
with a softmax function, which has weight and bias parameters W and b
respectively. First, we sample W, b ∼ N (0, 1). Then, for each Ci, we sam-
ple µi, σi ∼ N (0, 1) and sample features xi ∼ Pi(X). We obtain yi from
arg maxy∈Y P (Y |X =xi).

– SynLabel: Pi(Y ) varies and P (Y |X) shared among client devices i. Given
the number classes |Y |, we create a discrete multinomial distribution sampled
from a Dirichlet distribution Dir(β1, . . . , β|Y |), where βk > 0. We repeat this
for each Ci. Then, for each y ∈ Y , we sample µy, σy ∼ N (0, 1) to parameterize
P (Y |X) for all i. For each client device we apply logical sampling [11] to
obtain yi ∼ Pi(Y ) and xi ∼ P (X|Y = yi) accordingly.

Real-world Datasets: We evaluate on three standard FL benchmark datasets:
MNIST [16], Federated Extended MNIST (FEMNIST) [7], and The Complete
Works of William Shakespeare (Shakespeare) [20]. These datasets are curated
from recently proposed FL benchmarks [6, 28]. We use the data partition provided
by [17]. For MNIST, the data is distributed, via power law, across 1,000 devices
and each device has samples of 2 classes. FEMNIST is a 62 image classification
dataset, including both handwritten digits and letters. There are 200 devices and
10 lowercase letters (‘a’ to ‘j’) is subsampled such that each device has samples for
5 classes. Shakespeare is used for the next character prediction task, consisting
of lines spoken by different characters (80 classes) in the plays.

4.2 Implementation

We consider centralized FL as our comparison and implemented FedAvg and
FedP2P in PyTorch [23]. We evaluate using various model architectures, both
convex and non-convex. We use logistic regression for synthetic and MNIST,
Convolution Neural Network for FEMNIST, and LSTM classifier for Shakespeare.
In order to draw a fair comparison, we use the same set of models and parameters
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Fig. 4: Comparison on average test accuracy across clients between FedAvg and
FedP2P with 50 % Stragglers. FedP2P achieves similar accuracy as when there
are no stragglers. However, FedAvg suffers from straggler. FedAvg achieves much
lower accuracy. Besides, FedP2P shows a much smoother curve. We can observe
accuracy jump up to 20 percent between two rounds for FedAvg.

for FedAvg and FedP2P. Specifically, we use 2-layer CNN with a hidden size of
64 and 1-layer LSTM with a hidden size of 256. Models are trained using SGD.
ReLU is used as the activation function. Data is split 80% train and 20% test.
We use batch size of 10. We use learning rates of .01 for synthetic, MNIST,
FEMNIST, and and .5 for Shakespeare based on grid search on FedAvg and 20
epochs. Number of devices selected to train per round is fixed to 10. Both code
and datasets will be released once published.

4.3 Model Accuracy

In this section, we compare FedP2P and FedAvg in terms of test accuracy. We
hold test data for each device and follow the standard evaluation metric of
classification accuracy. As shown in Table 1, FedP2P outperforms FedAvg on
all datasets. Fig. 2 shows the test accuracy as a function of the total round of
communication with the central server. Here, we control the number of global
communication to be the same for both methods. For a fair comparison, we only
let one round of training within each local P2P network.

On FEMNIST, FedP2P achieved 2.6% increase in test accuracy. On MNIST,
FedP2P achieved 3.7% increase in test accuracy. On Shakespeare, FedP2P achieved
9% increase in test accuracy. We see that FedP2P achieves higher testing accuracy
on every global communication from Fig. 2. Compared to FedAvg, FedP2P gives a
rather smooth accuracy curve. In Fig. 2(f), we provide a plot for training loss on
FEMNIST. It worth noting that FedP2P also gives a smooth convergence curve.
These results demonstrate that FedP2P achieves higher model accuracy compared
to the centralized approach.

4.4 Communication Efficiency

We numerically compare FedP2P and FedAvg in terms of the communication
efficiency based upon the analysis in Section 3.2. The ratio of the download
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Table 1: Summary of best test accuracy on various datasets for FedP2P and
FedAvg.

Dataset FedP2P FedAvg

MNIST 0.9092 0.8763
FEMNIST 0.9168 0.8929
Shakespeare 0.5019 0.4563
SynCov 0.9252 0.9032
SynLabel 0.6199 0.5149
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Fig. 5: Test accuracy on MNIST for FedP2P on various parameter settings. (a)
shows FedP2P with various numbers of local P2P network. Different choices of L
do not affect model performance with FedP2P, and thus we can set L to optimize
for communication efficiency. (b) and (c) show FedP2P with various number of
total participating devices. FedP2P is also robust with diverse choices of L and
Q.

bandwidth to the upload bandwidth of devices varies with different Internet
providers, and it covers a wide range. We set the ratio α to {1, 4, 16} as in [1].
The number of sampled devices for one round of training is within [500, 5000] [13].
Another parameter that determines the value of R in Eq. (2) is γ, which is the
ratio of the server bandwidth to the device bandwidth. Current edge devices
have the bandwidth of more than 20 Mbps (e.g., 4K streaming [22]). Also, the
advent of 5G enables much higher bandwidth for edge devices [31]. The server
bandwidth typically ranges from 10 Gbps to less than 1 Gbps [12]. Therefore, we
set γ in the range of [50, 1000] in our simulation.

Fig. 3 shows the comparison of the communication time. With γ = 100,
FedP2P always outperforms FedAvg with the number of sampled devices larger
than 500. FedP2P can achieve better performance than FedAvg with more sampled
devices, smaller γ, or larger α. However, if the number of sampled devices is small
(e.g., P < 100), or if the device bandwidth is extremely poor (e.g., γ > 1000),
then FedAvg can potentially outperform FedP2P in terms of the communication
time because the performance bottleneck is not the server in these cases. In
practice, thousands of devices are sampled for the training in each round, and the
sampled devices usually have high bandwidth due to the sampling mechanism [13].
For example, the server tends to select devices with powerful computing capacity
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and high bandwidth to avoid stragglers. As a result, we argue that FedP2P is
more scalable and communication-efficient than FedAvg for large-scale FL.

4.5 Stragglers Effect and Choice of L and Q

Straggers: It is known that FL suffers from stragglers. Specifically, devices fail in
on-device training or drop connection due to hardware issues or communication
instability. Stragglers cause convergence problems and lead to models with poor
performance. We empirically test how robust FedP2P is in the straggler situation
in terms of model performance, and we present our result in Fig. 4. We drop
50% of the selected devices to simulate stragglers. FedP2P performs exceptionally
well with stragglers. FedP2P archives similar accuracy while the performance
of FedAvg dramatically drops. Besides, comparing to FedAvg, accuracy curves
are still relatively smooth for FedP2P. For example, the most significant jump
on MNIST for FedAvg can exceed over 20 percent, while we do not observe a
noticeable increase with FedP2P.

L and Q: We conduct two sets of experiments on MNIST to illustrate
how FedP2P performs under various parameters. FedP2P introduces L local P2P
networks, and within each P2P network, Q devices participated in the training.
We conduct the first set of experiments with varying L and the same Q and
present the result in Fig. 5(a). We do not observe significant differences among
various L. Compared with FedAvg from Fig. 2(a), we notice that all FedP2P
plots lies above FedAvg. Thus, we conclude that FedP2P is robust to various
L setting from the perspective of convergence and accuracy. As a result, in
practice, FedP2P allows us to choose L to optimize for communication efficiency.
We conduct the second set of experiment with various combination of L and Q,
where P = L×Q and P = 100 and 200. We present the result the in Fig. 5(b)
and Fig. 5(c). We observe that different combinations of L and Q has negligible
effect on classification performance.

5 Conclusion

In this work, we focus on decentralizing FL and propose FedP2P, an approach
that utilizes peer communication to train one global model collectively. A unique
possibility due to our random partition process is that it allows us to exploit device
network topology. If we assume that the data distribution is independent of the
network evolving topology, then a random selection of devices to form local P2P
networks is identical with any deterministic selection (i.e., Principle of deferred
decisions [21]). Effectively, we can partition devices into local P2P networks
based on favorable network topology. For example, it is widely accepted that long
communication hops create potential problems such as low throughput and high
latency due to network congestion. Grouping devices based on communication
hops would greatly benefit communication efficiency. For example, in Fig. 1(c),
devices within fewer communication hops are grouped into the same local P2P
network.
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Sun, Z., Suresh, A.T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z.,
Yang, Q., Felix X. Yu, Han Yu, S.Z.: Advances and open problems in federated
learning. arXiv:1912.04977 (2019)

14. Koloskova, A., Stich, S.U., Jaggi, M.: Decentralized stochastic optimization and
gossip algorithms with compressed communication. In: Proceedings of the 36th
International Conference on Machine Learning (2019)

15. Lalitha, A., Kilinc, O.C., Javidi, T., Koushanfar, F.: Peer-to-peer federated learning
on graphs. arXiv:1901.11173 (2019)



16 Li Chou*, Zichang Liu*, Zhuang Wang, and Anshumali Shrivastava

16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

17. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated op-
timization in heterogeneous networks. In: Proceedings of the 3rd MLSys Conference
(2020)

18. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg
on non-IID data. In: ICLR (2020)

19. Lian, X., Zhang, C., Zhang, H., Hsieh, C.J., Zhang, W., Liu, J.: Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent. In: 31st Conference on Neural Information Processing
System (2017)

20. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (2017), ([v1] arXiv:1602.05629, 2/2016)

21. Mitzenmacher, M., Upfal, E.: Probability and Computing : Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press (2005)

22. Netflix: https://help.netflix.com/en/node/306?rel=related (2020)
23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
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